【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點(diǎn)OAB中點(diǎn),點(diǎn)P為直線BC上的動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),連接OC、OP,將線段OP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)60°,得到線段PQ,連接BQ

(1)如圖1,當(dāng)點(diǎn)P在線段BC上時(shí),試猜想寫(xiě)出線段CPBQ的數(shù)量關(guān)系,并證明你的猜想;

(2)如圖2,當(dāng)點(diǎn)PCB延長(zhǎng)線上時(shí),(1)中結(jié)論是否成立?(直接寫(xiě)“成立”或“不成立”即可,不需證明).

【答案】(1) BQCP.理由見(jiàn)解析;(2) 成立:PCBQ, 理由見(jiàn)解析.

【解析】

(1)由∠ACB=90°,A=30°得到∠ABC=60°,根據(jù)直角三角形斜邊上中線性質(zhì)得到OB=OC,則可判斷△OCB、CPH為等邊三角形,作輔助線PHABCOH,證明△POH≌△QPB全等可得PHQB= PC;

(2)與(1)的證明方法同樣得到△POH≌△QPB,可得PHQB= PC。

解:(1)結(jié)論:BQCP

理由:如圖1中,作PHABCOH

在Rt△ABC中,∵∠ACB=90°,∠A=30°,點(diǎn)OAB中點(diǎn),

COAOBO,∠CBO=60°,

∴△CBO是等邊三角形,

∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,

∴∠CHP=∠CPH=60°,

∴△CPH是等邊三角形,

PCPHCH,

OHPB,

∵∠OPB=∠OPQ+∠QPB=∠OCB+∠COP,

∵∠OPQ=∠OCP=60°,

∴∠POH=∠QPB,

∵在△POH與△QPB

,

∴△POH≌△QPBSAS),

PHQB

PCBQ

(2)成立:PCBQ

理由:作PHABCO的延長(zhǎng)線于H

在Rt△ABC中,∵∠ACB=90°,∠A=30°,點(diǎn)OAB中點(diǎn),

COAOBO,∠CBO=60°,

∴△CBO是等邊三角形,

∴∠CHP=∠COB=60°,∠CPH=∠CBO=60°,

∴∠CHP=∠CPH=60°,

∴△CPH是等邊三角形,

PCPHCH

OHPB,

∵∠POH=60°+∠CPO,∠QPO=60°+∠CPQ,

∴∠POH=∠QPB,

∵在△POH與△QPB

,

∴△POH≌△QPBSAS),

PHQB,

PCBQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC2,點(diǎn)PBC上.若點(diǎn)PBC的中點(diǎn),則mAP2+BPPC的值為多少?若BC邊上有100個(gè)不同的點(diǎn)P1,P2,,P100,且miAPi2+BPiPiCi1,2,100),則mm1+m2+…+m100 的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=x與雙曲線y=交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為

(1)求k的值;

(2)若雙曲線y=上點(diǎn)C的縱坐標(biāo)為3,求△AOC的面積;

(3)在坐標(biāo)軸上有一點(diǎn)M,在直線AB上有一點(diǎn)P,在雙曲線y=上有一點(diǎn)N,若以O(shè)、M、P、N為頂點(diǎn)的四邊形是有一組對(duì)角為60°的菱形,請(qǐng)寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC,CACB6cm,AB8cm,點(diǎn)OABC內(nèi)一點(diǎn)(點(diǎn)O不在ABC邊界上).請(qǐng)你運(yùn)用圖形旋轉(zhuǎn)和兩點(diǎn)之間線段最短等數(shù)學(xué)知識(shí)、方法,求出OA+OB+OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.(1)計(jì)算AB的長(zhǎng)等于__,(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出一個(gè)ADE,使ADEABC,且滿足點(diǎn)DAC邊上,點(diǎn)EAB邊上,AE2.簡(jiǎn)要說(shuō)明畫(huà)圖方法(不要求證明)__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),把轉(zhuǎn)盤(pán)A、B分別分成4等份、3等份,并在每一份內(nèi)標(biāo)上數(shù)字,如圖所示.游戲規(guī)定:轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)停止后,指針必須指到某一數(shù)字,否則重轉(zhuǎn).

1)請(qǐng)用樹(shù)狀圖或列表法列出所有可能的結(jié)果;

2)若指針?biāo)傅膬蓚(gè)數(shù)字都是方程x2-5x+6=0的解時(shí),則甲獲勝;若指針?biāo)傅膬蓚(gè)數(shù)字都不是方程x2-5x+6=0的解時(shí),則乙獲勝,問(wèn)他們兩人誰(shuí)獲勝的概率大?請(qǐng)分析說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(guò)A0,3),B10)兩點(diǎn),頂點(diǎn)為M

1)求bc的值;

2)若只沿y軸上下平移該拋物線后與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,且四邊形AMM1A1是菱形,寫(xiě)出平移后拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)AB重合),過(guò)點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案