如圖所示,⊙O是正方形ABCD的外接圓,延長BA到E,使AE=AB,連接DE,OE,OE交AD于點F.求證:

(1)直線DE是⊙O的切線;

(2)EF=2FO.

答案:
解析:

(1)連接OD,證明OD⊥DE;

(2)過點O作OG⊥AB于G,證明AE=2AG

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標(biāo)原點,頂點A在x軸的精英家教網(wǎng)正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時,求點B′和點E的坐標(biāo);
(3)當(dāng)B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△OAB是邊長為2+
3
的等邊三角形,其中O是坐標(biāo)原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為C,求C關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時,求點B′和點E的坐標(biāo);
(3)在(2)的條件下,若拋物線y=-2x2+bx+c的對稱軸是直線B′E,且經(jīng)過原點O,求b、c的值;
(4)當(dāng)B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,△OAB是邊長為數(shù)學(xué)公式的等邊三角形,其中O是坐標(biāo)原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時,求點B′和點E的坐標(biāo);
(3)當(dāng)B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年北京市中考數(shù)學(xué)模擬試卷(六)(解析版) 題型:解答題

如圖所示,△OAB是邊長為的等邊三角形,其中O是坐標(biāo)原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時,求點B′和點E的坐標(biāo);
(3)當(dāng)B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京市豐臺區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖所示,△OAB是邊長為的等邊三角形,其中O是坐標(biāo)原點,頂點A在x軸的正方向上,將△OAB折疊,使點B落在邊OA上,記為B′,折痕為EF.
(1)設(shè)OB′的長為x,△OB′E的周長為c,求c關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)B′E∥y軸時,求點B′和點E的坐標(biāo);
(3)當(dāng)B′在OA上運動但不與O、A重合時,能否使△EB′F成為直角三角形?若能,請求出點B′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案