【題目】如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標(biāo);
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.
【答案】(1)E(3,1),F(1,2);(2);(3)存在,最小四邊形MNFE的周長最小值是5+.
【解析】分析:(1)△BDA沿BD翻折,使點A落在BC邊上的點F處,可以知道四邊形ADFB是正方形,因而BF=AB=OC=2,則CF=3-2=1,因而E、F的坐標(biāo)就可以求出.(2)頂點為F的坐標(biāo)根據(jù)第一問可以求得是(1,2),因而拋物線的解析式可以設(shè)為y=a(x-1)2+2,以點E、F、P為頂點的三角形是等腰三角形,應(yīng)分EF是腰和底邊兩種情況進(jìn)行討論.
①當(dāng)EF是腰,EF=PF時,已知E、F點的坐標(biāo)可以求出EF的長,設(shè)P點的坐標(biāo)是(0,n),根據(jù)勾股定理就可以求出n的值.得到P的坐標(biāo).當(dāng)EF是腰,EF=EP時,可以判斷E到y軸的最短距離與EF的大小關(guān)系,只有當(dāng)EF大于E到y軸的距離,P才存在.
②當(dāng)EF是底邊時,EP=FP,根據(jù)勾股定理就可以得到關(guān)于n的方程,就可以解得n的值.
(3)作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點.求出線段E′F′的長度,就是四邊形MNFE的周長的最小值.
本題解析:(1)E(3,1);F(1,2).
(2)在Rt△EBF中,∠B=90,∴EF=
設(shè)點P的坐標(biāo)為(0,n),其中n>0,∵頂點F(1,2),
∴設(shè)拋物線解析式為y=a(x1) +2(a≠0).
①如圖1,
當(dāng)EF=PF時, ,
∴.
解得 (舍去); .
∴P(0,4).
∴4=a(01) +2.
解得a=2.
∴拋物線的解析式為y=2(x1) +2
②如圖2,
當(dāng)EP=FP時,EP=FP,∴(2n) +1=(1n) +9.解得n= (舍去)
③當(dāng)EF=EP時,EP=<3,這種情況不存在。
綜上所述,符合條件的拋物線解析式是y=2(x1) +2.
(3)存在點M,N,使得四邊形MNFE的周長最小。
如圖3,作點E關(guān)于x軸的對稱點E′,作點F關(guān)于y軸的對稱點F′,
連接E′F′,分別與x軸、y軸交于點M,N,則點M,N就是所求點。
∴E′(3,1),F′(1,2),NF=NF′,ME=ME′.∴BF′=4,BE′=3.
∴FN+NM+ME=F′N+NM+ME′=E′F′=.
又∵EF=,
∴FN+MN+ME+EF=5+,此時四邊形MNFE的周長最小值是5+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館擁有客房100間,經(jīng)營中發(fā)現(xiàn):每天入住的客房數(shù)y(間)與房價x(元)(180≤x≤300)滿足一次函數(shù)關(guān)系,部分對應(yīng)值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(間) | 100 | 60 | 50 | 40 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)已知每間入住的客房,賓館每日需支出各種費用100元;每間空置的客房,賓館每日需支出各種費用60元.當(dāng)房價為多少元時,賓館當(dāng)日利潤最大?求出最大利潤.(賓館當(dāng)日利潤=當(dāng)日房費收入-當(dāng)日支出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點O, .
(1)如果,那么根據(jù)___________,可得=__________度.
(2)如果,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字, , , 的小球,它們的形狀、大小、質(zhì)地等完全相同.小強先從盒子里隨機取出一個小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小強、小華各取一次小球所確定的點(x,y)落在一次函數(shù)的圖象上的概率;
(3)求小強、小華各取一次小球所確定的數(shù)x、y滿足的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF結(jié)果精確到米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在第一象限內(nèi),其坐標(biāo)為(2,1),以O(shè)A為邊在x軸上方作正方形OABC,則正方形OABC的頂點C的坐標(biāo)是( )
A.(﹣2,1)
B.(1,3)
C.(1,2)
D.(﹣1.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于強降雨,某地區(qū)出現(xiàn)嚴(yán)重洪澇災(zāi)害,某愛心組織緊急籌集了部分資金,計劃購買甲、乙兩種救災(zāi)物品送往該地區(qū),已知每件甲種物品的價格必每件乙種物品的價格高10元,用350元購買甲種物品的件數(shù)與用300元購買乙種物品的件數(shù)相同,求甲、乙兩種救災(zāi)物品每件的價格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x=2時,代數(shù)式px3+qx+1的值等于2016,那么當(dāng)x=﹣2時,求px3+qx+1 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com