【題目】如圖1為坐標(biāo)原點(diǎn),矩形的頂點(diǎn),,將矩形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)一定的角度得到矩形,此時(shí)邊、直線(xiàn)分別與直線(xiàn)交于點(diǎn)、

1)連接,在旋轉(zhuǎn)過(guò)程中,當(dāng)時(shí),求點(diǎn)坐標(biāo).

2)連接,當(dāng)時(shí),若為線(xiàn)段中點(diǎn),求的面積.

3)如圖2,連接,以為斜邊向上作等腰直角,請(qǐng)直接寫(xiě)出在旋轉(zhuǎn)過(guò)程中的最小值.

【答案】1P(﹣4,6);(2;(3

【解析】

1)利用∠PAO=∠POA得出PAPO,進(jìn)而得出AEEO4,即可得出P點(diǎn)坐標(biāo);

2)首先得出RtOCQRtOC'QHL),進(jìn)而利用平行線(xiàn)的性質(zhì)求出∠POQ=∠PQO,即可得出BPPO,再利用勾股定理得出PQ的長(zhǎng),進(jìn)而求出△OPQ的面積;

3)先構(gòu)造一組手拉手的相似三角形,將CM的長(zhǎng)轉(zhuǎn)化為,然后通過(guò)垂線(xiàn)段最短及全等三角形求解即可.

解:如圖1,過(guò)點(diǎn)PPEAO于點(diǎn)E,

,

AO8

∵∠PAO=∠POA

PAPO,

PEAO

AEEO4,

P(﹣46);

2)如圖2,在RtOCQRtOC'Q中,

RtOCQRtOC'QHL),

∴∠OQC=∠OQC',

又∵OPC'Q,

∵∠POQ=∠OQC',

∴∠POQ=∠PQO,

POPQ,

∵點(diǎn)PBQ的中點(diǎn),

BPQP,

∴設(shè)BPOPx,

RtOPC中,OP 2PC 2 OC 2

x2=(8x262,

解得:x

SOPQ×CO×PQ×6×

3)如圖3,連接CM、AC,在AC的右側(cè)以AC為腰,ACG為直角作等腰直角三角形ACG,連接QG,

AMQACG為等腰直角三角形,

,∠MAQCAG45°,

,∠MACQAG

∴△MACQAC,

,

,

∵點(diǎn)Q在直線(xiàn)BC上,

∴當(dāng)GQBC時(shí),GQ取得最小值,

如圖3,作GHBC,則GQ的最小值為線(xiàn)段GH的長(zhǎng),

ACGB90°,

∴∠ACBGCHACBBAC90°,

∴∠GCHBAC,

∵∠BGHC90°,ACCG,

∴△ABC≌△CHGAAS

GHBC8

GQ的最小值為8,

CM的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CDAB,垂足為D,AC=20,BC=15.動(dòng)點(diǎn)PA開(kāi)始,以每秒2個(gè)單位長(zhǎng)的速度沿AB方向向終點(diǎn)B運(yùn)動(dòng),過(guò)點(diǎn)P分別作AC、BC邊的垂線(xiàn),垂足為E、F.

(1)ABCD的長(zhǎng);

(2)當(dāng)矩形PECF的面積最大時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間t;

(3)以點(diǎn)C為圓心,r為半徑畫(huà)圓,若圓C與斜邊AB有且只有一個(gè)公共點(diǎn)時(shí),求r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ABC=120°,AC=4,

(1)用直尺和圓規(guī)作出△ABC的外接圓⊙O(不寫(xiě)作法,保留作圖痕跡);

(2)求∠AOC的度數(shù);

(3)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線(xiàn)y=ax2+bx+c(a≠0)經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).點(diǎn)DC出發(fā),沿線(xiàn)段CO1個(gè)單位/秒的速度向終點(diǎn)O運(yùn)動(dòng),過(guò)點(diǎn)DOC的垂線(xiàn)交BC于點(diǎn)E,作EF∥OC,交拋物線(xiàn)于點(diǎn)F.

(1)求此拋物線(xiàn)的解析式;

(2)小明在探究點(diǎn)D運(yùn)動(dòng)時(shí)發(fā)現(xiàn),當(dāng)點(diǎn)D與點(diǎn)C重合時(shí),EF長(zhǎng)度可看作O;②當(dāng)點(diǎn)D與點(diǎn)O重合時(shí),EF長(zhǎng)度也可以看作O,于是他猜想:設(shè)點(diǎn)D運(yùn)動(dòng)到OC中點(diǎn)位置時(shí),當(dāng)線(xiàn)段EF最長(zhǎng),你認(rèn)為他猜想是否正確,為什么?

(3)連接CF、DF,請(qǐng)直接寫(xiě)出△CDF為等腰三角形時(shí)所有t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B0,4),C02).

1)將ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的A1B1C1,平移ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的A2B2C2;

2)若將A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD滿(mǎn)足AB:BC=1: ,把矩形ABCD對(duì)折,使CDAB重合,得折痕EF,把矩形ABFE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得到矩形A′BF′E′,連結(jié)E′B,交A′F′于點(diǎn)M,連結(jié)AC,交EF于點(diǎn)N,連結(jié)AM,MN,若矩形ABCD面積為8,則AMN的面積為(

A. 4 B. 4 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CDAB邊上的中線(xiàn),ECD的中點(diǎn),過(guò)點(diǎn)CAB的平行線(xiàn)交AE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接BF

(1) 求證:CFAD;

(2) CACB,∠ACB90°,試判斷四邊形CDBF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)k為常數(shù),k≠1).

)其圖象與正比例函數(shù)y=x的圖象的一個(gè)交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;

)若在其圖象的每一支上,yx的增大而減小,求k的取值范圍;

)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)Ax1,y1、Bx2,y2,當(dāng)y1y2時(shí),試比較x1x2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點(diǎn)P,且DP=3.將矩形紙片折疊,使點(diǎn)B與點(diǎn)P重合,折痕所在直線(xiàn)交矩形兩邊于點(diǎn)E,F(xiàn),則EF長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案