【題目】如圖,有一塊長(zhǎng)為21m、寬為10m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過(guò)3米.

(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;

(2)能否改變?nèi)诵型ǖ赖膶挾,使得每塊綠地的寬與長(zhǎng)之比等于3:5,請(qǐng)說(shuō)明理由.

【答案】(1)2米;(2)不能改變?nèi)诵袡M道的寬度使得每塊綠地的寬與長(zhǎng)之比等于3:5.

【解析】

(1)設(shè)人行通道的寬度為x米,將兩塊矩形綠地的長(zhǎng)和寬用含有x的式子表示出來(lái),根據(jù)“兩塊矩形綠地的面積共為90平方米”列出關(guān)于x的一元二次方程,解之即可;(2)根據(jù)每塊綠地的寬與長(zhǎng)之比等于3:5列出方程求得人行橫道的寬度后與3米比較即可得到答案.

(1)設(shè)人行通道的寬度為x米,

則兩塊矩形綠地的長(zhǎng)為(21﹣3x)(米),

寬為(10﹣2x)(米),

根據(jù)題意得:(21﹣3x)(10﹣2x)=90,

解得:x1=10(舍去),x2=2,

答:人行通道的寬度為2米;

(2)設(shè)人行通道的寬為y米時(shí),每塊綠地的寬與長(zhǎng)之比等于3:5,

根據(jù)題意得:(10﹣2y):=3:5,

解得:y=,

>3,

∴不能改變?nèi)诵袡M道的寬度使得每塊綠地的寬與長(zhǎng)之比等于3:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用小立方體搭一個(gè)幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個(gè)數(shù),請(qǐng)解答下列問(wèn)題:

(1)求的值;

(2)這個(gè)幾何體最少有幾個(gè)小立方體搭成,最多有幾個(gè)小立方體搭成;

(3)當(dāng)時(shí)畫出這個(gè)幾何體的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是函數(shù)上兩點(diǎn),為一動(dòng)點(diǎn),作軸,軸,下列說(shuō)法正確的是( )

;③若,則平分;④若,則

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O的兩條弦AB、CD交于點(diǎn)E,OE平分∠BED.

(1)求證:AB=CD;

(2)若∠BED=60°,EO=2,求DE﹣AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BC是⊙O的直徑,點(diǎn)AD在⊙O上,∠B=2CAD,在BC的延長(zhǎng)線上有一點(diǎn)P,使得∠PACB,弦AD交直徑BC于點(diǎn)E

(1)求證:DP與⊙O相切;

(2)判斷DCE的形狀,并證明你的結(jié)論;

(3)若CE=2,DE,求線段BC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩組工人同時(shí)開始加工某種零件,乙組在工作中有一次停產(chǎn)更換設(shè)備,更換設(shè)備后,乙組的工作效率是原來(lái)的2倍.兩組各自加工零件的數(shù)量y(件)與時(shí)間x(時(shí))之間的函數(shù)圖象如圖所示.甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時(shí)間忽略不計(jì),求經(jīng)過(guò)_____小時(shí)恰好裝滿第1箱.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=﹣x2x+2與x軸交于點(diǎn)A,B兩點(diǎn),交y軸于C點(diǎn),拋物線的對(duì)稱軸與x軸交于H點(diǎn),分別以OCOA為邊作矩形AECO

(1)求直線AC的解析式;

(2)如圖2,P為直線AC上方拋物線上的任意一點(diǎn),在對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)四邊形AOCP面積最大時(shí),求|PMOM|的最大值.

(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'CD'.使得點(diǎn)A′、C'在直線AC上,是否存在這樣的點(diǎn)D′,使得△AED′為直角三角形?若存在,請(qǐng)求出點(diǎn)D′的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為圓內(nèi)接四邊形,A為弧BD中點(diǎn),連接對(duì)角線AC,E在AC上,且AE=AB求證:

(1)∠CBE=∠CAD;

(2)AC2=BCCD+AB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰(shuí)去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字23,45.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?/span>3個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

1)用列表法或畫樹狀圖法,求小麗參賽的概率.

2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案