已知函數(shù)y=的圖象如圖,以下結(jié)論:
①m<0;
②在每個分支上y隨x的增大而增大;
③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a<b;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.
其中正確的個數(shù)是( 。

A.4個 B.3個 C.2個 D.1個

B

解析試題分析:①根據(jù)反比例函數(shù)的圖象的兩個分支分別位于二、四象限,可得m<0,故正確;
②在每個分支上y隨x的增大而增大,正確;
③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,由圖象可知a>b,所以a<b錯誤;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上,正確,
故選B.
考點(diǎn):1、反比例函數(shù)的性質(zhì);2、反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸相交于O、B,頂點(diǎn)為A,連接OA.

(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向下平移2個單位,得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線上,請說明理由;
(4)若點(diǎn)P為x軸上的一個動點(diǎn),試探究在拋物線m上是否存在點(diǎn)Q,使以點(diǎn)O、P、C、Q為頂點(diǎn)的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與拋物線相交于A,B兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且。
(1)求b的值;
(2)求證:點(diǎn)在反比例函數(shù)的圖象上;
(3)求證:。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與 軸交于A(,0),B(2,0),且與軸交于點(diǎn)C.


(1)求該拋物線的解析式,并判斷△ABC的形狀;
(2)點(diǎn)P是x軸下方的拋物線上一動點(diǎn), 連接PO,PC,
并把△POC沿CO翻折,得到四邊形,求出使四邊形為菱形的點(diǎn)P的坐標(biāo);
(3) 在此拋物線上是否存在點(diǎn)Q,使得以A,C,B,Q四點(diǎn)為頂點(diǎn)的四邊形是直角梯形?若存在, 求出Q點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若反比例函數(shù)的圖象上有兩點(diǎn)P1(2,y1)和P2(3,y2),那么(  )

A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

點(diǎn)(﹣1,y1),(2,y2),(3,y3)均在函數(shù)y=的圖象上,則y1,y2,y3的大小關(guān)系是(  )

A.y3<y2<y1B.y2<y3<y1
C.y1<y2<y3D.y1<y3<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)(2,3),那么下列四個點(diǎn)中,也在這個函數(shù)圖象上的是( 。

A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

下列各點(diǎn)在雙曲線y=上的是( )

A.(3,-4)B.(4,-3)C.(-2,6)D.(-2,-6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

已知成反比例,且當(dāng) 時,,那么當(dāng)  時,   .

查看答案和解析>>

同步練習(xí)冊答案