【題目】如圖,在四邊形中,,

1)求證:四邊形為平行四邊形;

2)若,,求四邊形的面積.

【答案】1)見解析;(2120

【解析】

1)由可得兩對內(nèi)錯角,,再加上已知,可用AAS證明,所以,進而可用一組對邊平行且相等的四邊形是平行四邊形的判定定理即可證為平行四邊形;

2)在中,可得,至此,用勾股定理的逆定理可判斷定△AOD為直角三角形,然后再利用平行四邊形面積公式進行求解即可.

證明:(1,

,,

,

,

,

∵AB//CD,

四邊形為平行四邊形;

2四邊形ABCD為平行四邊形,

,

∵AD=12,OD=OB=5

∴OD 2 + AD 2 =52+122=169, OA 2 = 132=169,BD=10,

∴OD2+AD2=OA2,

∴∠ADB=90°,

∴S四邊形ABCD=ADBD=12×10=120

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年豬肉價格受非洲豬瘟疫情影響,有較大幅度的上升,為了解某地區(qū)養(yǎng)殖戶受非洲豬瘟疫情感染受災(zāi)情況,現(xiàn)從該地區(qū)建檔的養(yǎng)殖戶中隨機抽取了部分養(yǎng)殖戶進行了調(diào)查(把調(diào)查結(jié)果分為四個等級:A級:非常嚴(yán)重;B級:嚴(yán)重;C級:一般;D級:沒有感染),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解決下列問題:

1)本次抽樣調(diào)查的養(yǎng)殖戶的總戶數(shù)是   ;把圖2條形統(tǒng)計圖補充完整.

2)若該地區(qū)建檔的養(yǎng)殖戶有1500戶,求非常嚴(yán)重與嚴(yán)重的養(yǎng)殖戶一共有多少戶?

3)某調(diào)研單位想從5戶建檔養(yǎng)殖戶(分別記為ab,c,de)中隨機選取兩戶,進一步跟蹤監(jiān)測病毒傳播情況,請用列表或畫樹狀圖的方法求出選中養(yǎng)殖戶e的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC,BD交于點O,且ACBC,點EBC延長線上一點, ,連接DE.

(1)求證:四邊形ACED為矩形;

(2)連接OE,如果BD=10,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象如圖所示,對稱軸為過點且平行于軸的直線,則下列結(jié)論中正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x4x軸、y軸分別交于AB兩點,拋物線y=x2bxc經(jīng)過A、B兩點,并與x軸交于另一點C(點CA的右側(cè)),點P是拋物線上一動點.

1)求拋物線的解析式及點C的坐標(biāo);

2)若點P在第二象限內(nèi),過點PPD⊥軸于D,交AB于點E.當(dāng)點P運動到什么位置時,線段PE最長?此時PE等于多少?

3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點MOA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M為雙曲線y上一點,過點Mx軸、y軸的垂線,分別交直線y=﹣x+2mD、C兩點,若直線y=﹣x+2my軸于A,交x軸于B,則ADBC的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某市為創(chuàng)評全國文明城市稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.

抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機抽取第二張,記下姓名.

(1)該班男生小剛被抽中 事件,小悅被抽中 事件(不可能必然隨機”);第一次抽取卡片小悅被抽中的概率為 ;

(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出小惠被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】證明三角形中位線定理:三角形的中位線平行于第三邊,且等于第三邊的一半(要求:自己作圖并寫出己知、求證、證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象與直線交于點

1)求k的值;

2)已知點,過點P作垂直于x軸的直線,交直線于點B,交函數(shù)于點C

①當(dāng)時,判斷線段的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合圖象,直接寫出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案