【題目】如圖,已知:,.
(1)請找出圖中一對全等的三角形,并說明理由;
(2)若,,求的度數(shù).
【答案】(1)△OAD≌△OBC,證明見解析;(2)∠BED=40°
【解析】
(1)由SAS可以判定△OAD≌△OBC
(2)△OAD≌△OBC可得∠D=∠C=25°利用三角形內(nèi)角和為180°可得∠OBC=65°利用三角形的外角等于與它不相鄰的兩個內(nèi)角的和,可得∠BED的度數(shù).
解(1)△OAD≌△OBC
理由:在△OAD與△OBC中
∴△OAD≌△OBC(SAS)
(2)由(1)可知:△OAD≌△OBC
∴∠D=∠C
∵∠C=25°
∴∠D=25°
∵∠O=90°
∴∠OBC=180°-∠O-∠C
=180°-90°-25°
=65°
在△BDE中,∠OBC=∠D+∠BED
∴∠BED=∠OBC-∠D
=65°-25°
=40°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教研部門對本區(qū)初二年級的學(xué)生進(jìn)行了一次隨機抽樣問卷調(diào)查,其中有這樣一個問題:老師在課堂上放手讓學(xué)生提問和表達(dá)( )
A.從不 B.很少 C.有時 D.常常 E.總是
答題的學(xué)生在這五個選項中只能選擇一項.下面是根據(jù)學(xué)生對該問題的答卷情況繪制的兩幅不完整的統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)該區(qū)共有 名初二年級的學(xué)生參加了本次問卷調(diào)查;
(2)請把這幅條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,“總是”的圓心角為 .(精確到度)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從謝家集到田家庵有3路,121路,26路三條不同的公交線路.為了解早高峰期間這三條線路上的公交車從謝家集到田家庵的用時時間,在每條線路上隨機選取了450個班次的公交車,收集了這些班次的公交車用時(單位:分鐘)的數(shù)據(jù),統(tǒng)計如下:早高峰期間,乘坐______(填“3路”,“121路”或“26路”)線路上的公交車,從謝家集到田家庵“用時不超過50分鐘”的可能性最大.
用時 | 合計(頻次) | |||
線路 | ||||
3路 | 260 | 167 | 23 | 450 |
121路 | 160 | 166 | 124 | 450 |
26路 | 50 | 122 | 278 | 450 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x-2)2-9經(jīng)過點P(6,7),與x軸交于A、B兩點,與y軸交于點C,直線AP與y軸交于點D,拋物線對稱軸與x軸交于點E.
(1)求拋物線的解析式;
(2)過點E任作一條直線l(點B、C分別位于直線l的異側(cè)),設(shè)點C到直線的距離為m,點B到直線l的距離為n,求m+n的最大值;
(3)y軸上是否存在點Q,使∠QPD=∠DEO,若存在,請求出點Q的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生小明、小華為了解本校八年級學(xué)生每周上網(wǎng)的時間,各自進(jìn)行了抽樣調(diào)查.小明調(diào)查了八年級信息技術(shù)興趣小組中40名學(xué)生每周上網(wǎng)的時間,算得這些學(xué)生平均每周上網(wǎng)時間為2.5h;小華從全體320名八年級學(xué)生名單中隨機抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時間,算得這些學(xué)生平均每周上網(wǎng)時間為1.2h.小明與小華整理各自樣本數(shù)據(jù),如表所示.
時間段(h/周) | 小明抽樣人數(shù) | 小華抽樣人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請根據(jù)上述信息,回答下列問題:
(1)你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?_____.
估計該校全體八年級學(xué)生平均每周上網(wǎng)時間為_____h;
(2)在具有代表性的樣本中,中位數(shù)所在的時間段是_____h/周;
(3)專家建議每周上網(wǎng)2h以上(含2h)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時間,根據(jù)具有代表性的樣本估計,該校全體八年級學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點E為BC邊上一點,AE和BD交于點F,已知△ABF的面積等于 6,△BEF的面積等于4,則四邊形CDFE的面積等于___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點D為AB的中點.如果點P在線段BC上以2cm/s的速度由點B向C點運動,同時,點Q在線段AC上由點A向C點以4cm/s的速度運動.
(1)若點P、Q兩點分別從B、A兩點同時出發(fā),經(jīng)過2秒后,與是否全等?請說明理由;
(2)若點P、Q兩點分別從B、A兩點同時出發(fā),的周長為16cm,設(shè)運動時間為t,問:當(dāng)t為何值時,是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,位于第二象限的點在反比例函數(shù)的圖像上,點與點關(guān)于原點對稱,直線經(jīng)過點,且與反比例函數(shù)的圖像交于點.
(1)當(dāng)點的橫坐標(biāo)是-2,點坐標(biāo)是時,分別求出的函數(shù)表達(dá)式;
(2)若點的橫坐標(biāo)是點的橫坐標(biāo)的4倍,且的面積是16,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com