【題目】良好的飲食對學生的身體、智力發(fā)育和健康起到了極其重要的作用,葷菜中蛋白質(zhì)、鈣、磷及脂溶性維生素優(yōu)于素食,而素食中不飽和脂肪酸、維生素和纖維素又優(yōu)于葷食,只有葷食與素食適當搭配,才能強化初中生的身體素質(zhì).某校為了了解學生的體質(zhì)健康狀況,以便食堂為學生提供合理膳食,對本校七年級、八年級學生的體質(zhì)健康狀況進行了調(diào)查,過程如下:
收集數(shù)據(jù):從七、八年級兩個年級中各抽取15名學生,進行了體質(zhì)健康測試,測試成績(百分制)如下:
七年級:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82
八年級:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50
整理數(shù)據(jù):
年級 | x<60 | 60≤x<80 | 80≤x<90 | 90≤x≤100 |
七年級 | 0 | 10 | 4 | 1 |
八年級 | 1 | 5 | 8 | 1 |
(說明:90分及以上為優(yōu)秀,80~90分(不含90分)為良好,60~80分(不含80分)為及格,60分以下為不及格)
分析數(shù)據(jù):
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 |
| 75 | 75 |
八年級 | 77.5 | 80 |
|
得出結(jié)論:
(2)可以推斷出 年級學生的體質(zhì)健康狀況更好一些,并說明理由;
(3)若七年級共有300名學生,請估計七年級體質(zhì)健康成績優(yōu)秀的學生人數(shù).
【答案】(1)76.8,81;(2)八,見解析;(3)20人.
【解析】
(1)由平均數(shù)和眾數(shù)的定義即可得出結(jié)果;
(2)從平均數(shù)、中位數(shù)以及眾數(shù)的角度分析,即可得到哪個年級學生的體質(zhì)健康情況更好一些;
(3)由七年級總?cè)藬?shù)乘以優(yōu)秀人數(shù)所占比例,即可得出結(jié)果.
解:(1)七年級的平均數(shù)為(74+81+75+76+70+75+75+79+81+70+74+80+91+69+82)=76.8,
八年級的眾數(shù)為81;
故答案為:76.8;81;
(2)八年級學生的體質(zhì)健康狀況更好一些;理由如下:
八年級學生的平均數(shù)、中位數(shù)以及眾數(shù)均高于七年級,說明八年級學生的體質(zhì)健康情況更好一些;
故答案為:八;
(3)若七年級共有300名學生,則七年級體質(zhì)健康成績優(yōu)秀的學生人數(shù)=300×=20(人).
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形中,點是邊上的一個動點(點與點不重合),連接,過點作于點,交于點.
(1)求證:;
(2)如圖2,當點運動到中點時,連接,求證:;
(3)如圖3,在(2)的條件下,過點作于點,分別交于點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知菱形ABCD的邊長為2,點A在x軸負半軸上,點B在坐標原點。點D的坐標為(,3),拋物線y=ax2+b(a≠0)經(jīng)過AB、CD兩邊的中點.
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個單位長度的速度沿x軸正方向勻速平移(如圖2),過點B作BE⊥CD于點E,交拋物線于點F,連接DF.設(shè)菱形ABCD平移的時間為t秒(0<t<3)
①是否存在這樣的t,使DF=FB?若存在,求出t的值;若不存在,請說明理由;
②連接FC,以點F為旋轉(zhuǎn)中心,將△FEC按順時針方向旋轉(zhuǎn)180°,得△FE′C′,當△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時,求t的取值范圍.(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅玩抽卡片和旋轉(zhuǎn)盤游戲,有兩張正面分別標有數(shù)字1,﹣2的不透明卡片,背面完全相同;轉(zhuǎn)盤被平均分成3個相等的扇形,并分別標有數(shù)字﹣1,3,4(如圖所示),小云把卡片背面朝上洗勻后從中隨機抽出一張,記下卡片上的數(shù)字;然后轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,記下指針所在區(qū)域的數(shù)字(若指針在分格線上,則重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止).請用列表或樹狀圖的方法(只選其中一種)求出兩個數(shù)字之積為負數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=16,BC=12,點D、E分別為邊AB、BC中點,點P從點A出發(fā),沿射線AB方向以每秒5個單位長度的速度向點B運動,到點B停止.當點P不與點A重合時,過點P作PQ∥AC,且點Q在直線AB左側(cè),AP=PQ,過點Q作QM⊥AB交射線AB于點M.設(shè)點P運動的時間為t(秒)
(1)用含t的代數(shù)式表示線段DM的長度;
(2)求當點Q落在BC邊上時t的值;
(3)設(shè)△PQM與△DEB重疊部分圖形的面積為S(平方單位),當△PQM與△DEB有重疊且重疊部分圖形是三角形時,求S與t的函數(shù)關(guān)系式;
(4)當經(jīng)過點C和△PQM中一個頂點的直線平分△PQM的內(nèi)角時,直接寫出此時t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示A、B、C、D四點在⊙O上的位置,其中=180°,且=,=.若阿超在上取一點P,在上取一點Q,使得∠APQ=130°,則下列敘述何者正確( )
A. Q點在上,且>B. Q點在上,且<
C. Q點在上,且>D. Q點在上,且<
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0),B(1,0),C(0,3)三點.
(1)求拋物線的函數(shù)表達式;
(2)如圖1,P為拋物線上在第二象限內(nèi)的一點,若△PAC面積為3,求點P的坐標;
(3)如圖2,D為拋物線的頂點,在線段AD上是否存在點M,使得以M,A,O為頂點的三角形與△ABC相似?若存在,求點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,點E是BC的中點,點F是線段AE上一點,BF的延長線交CD于點G.
(1)若,則______.
(2)若,求的值.(用含有m的代數(shù)式表示,寫出解答過程)
(3)如圖2,四邊形ABCD中,DC//AB,點E是BC的延長線上的一點,AE是BD相交于點F,若,,則____.(直接用含a,b的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com