精英家教網 > 初中數學 > 題目詳情
如圖,AB是⊙O的直徑,AB垂直于弦CD,垂足為點E,AB=10,∠C=60°.
求:(1)弦CD的長;(2)線段OE的長.

【答案】分析:(1)先根據條件可判定△OCD是等邊三角形,再根據其性質可知CD長等于半徑為5;
(2)根據垂徑定理可知CE,OE,OC構成直角三角形,利用勾股定理即可求解.
解答:解:(1)∵OC、OD是⊙O的半徑,∠C=60°
∴△OCD是等邊三角形
∴CD=OC=0.5AB=5;

(2)∵AB垂直弦CD,AB是⊙O的直徑
∴CE=0.5CD=
在Rt△OCE中
OE==
點評:主要考查了垂徑定理的運用.圓中涉及弦長、半徑、弦心距的計算的問題,常把半弦長,弦心距,半徑轉換到同一直角三角形中,然后通過直角三角形相關性質求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側面的一部分(如圖1),它的側面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網0.1平方米)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數學 來源:初中數學解題思路與方法 題型:047

已知如圖,AB是半圓直經,△ACD內接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案