【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4).

(1)畫(huà)出ABC關(guān)于x軸對(duì)稱的A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo)A1 ________________

(2)畫(huà)出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫(xiě)出點(diǎn)A2的坐標(biāo)A2__________________

(3) ABC是否為直角三角形?答_________(填是或者不是).

(4)利用格點(diǎn)圖,畫(huà)出BC邊上的高AD,并求出AD的長(zhǎng),AD=_____________.

【答案】 (2.-4) (-2,4) 不是

【解析】試題分析:(1)分別找出AB、C三點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),再順次連接,然后根據(jù)圖形寫(xiě)出A點(diǎn)坐標(biāo);

(2)將A1B1C1中的各點(diǎn)A1B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,即A2B2C2A1B1C1關(guān)于點(diǎn)O成中心對(duì)稱,得到相應(yīng)的對(duì)應(yīng)點(diǎn)A2、B2、C2,連接各對(duì)應(yīng)點(diǎn)即得A2B2C2;

(3)根據(jù)勾股定理逆定理解答即可;

(4)連接BD,過(guò)點(diǎn)AAHBDBC與點(diǎn)H,然后利用面積法求AH的長(zhǎng)度即可.

解:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,-4);

(2)如圖所示,點(diǎn)A2的坐標(biāo)(-2,4);

(3)∵AC2=32+12=10, AB2=22+12=5, BC2=42+12=17,

AC2+ AB2 BC2,

ABC不是直角三角形;

(4)連接BD,過(guò)點(diǎn)AAHBDBC與點(diǎn)H.

BB1=BE, ∠BB1D=∠BEC,B1D=CE,

∴△BB1D=△BEC,

∴∠CBE=∠DBB1.

∵∠DBE=∠DBB1=90°,

∴∠DBE=∠CBE =90°,

BDBC,

AHBC.

BC2=42+12=17,

BC=.

SABC=4×2-×2×1-×3×1-×4×1=,

BC·AH=,

AH=7,

AH= .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OA6 cm,COB的中點(diǎn),∠AOB120°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtBOARtCOA的斜邊在x軸上,BA6,A10,0),ACOB相交于點(diǎn)E,且CACO,連接BC,下列判斷一定正確的是( 。

ABE∽△OCE;②C5,5);③BC;④SABC3

A. ①③ B. ②④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點(diǎn),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D,其中A點(diǎn)坐標(biāo)為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點(diǎn)C沿y軸向下平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AFBF,求△ABF的面積.

3)根據(jù)圖象,直接寫(xiě)出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求A、B、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)AB重合),過(guò)點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰三角形ABC,CACB6cm,AB8cm,點(diǎn)OABC內(nèi)一點(diǎn)(點(diǎn)O不在ABC邊界上).請(qǐng)你運(yùn)用圖形旋轉(zhuǎn)和兩點(diǎn)之間線段最短等數(shù)學(xué)知識(shí)、方法,求出OA+OB+OC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,AB=3,EAD邊上的一點(diǎn)(EA、D不重合),以BE為邊畫(huà)正方形BEFG,邊EF與邊CD交于點(diǎn)H.

(1)當(dāng)E為邊AD的中點(diǎn)時(shí),求DH的長(zhǎng);

(2)設(shè)DE=x,CH=y,yx之間的函數(shù)關(guān)系式,并求出y的最小值;

(3)DE=,將正方形BEFG繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)適當(dāng)角度后得到正方形B'EF'G',如圖2,邊EF'CD交于點(diǎn)N、EB'BC交于點(diǎn)M,連結(jié)MN,求∠ENM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過(guò)點(diǎn)EEGCDAF于點(diǎn)G,連接DG.給出以下結(jié)論:①DG=DF;②四邊形EFDG是菱形;③EG2GF×AF;④當(dāng)AG=6,EG=2時(shí),BE的長(zhǎng)為 ,其中正確的結(jié)論個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設(shè)路基高為h,兩側(cè)的坡角分別為,已知h=2,,

(1)求路基底部AB的寬;

(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

同步練習(xí)冊(cè)答案