【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是( )

A.
B.2
C.3
D.2

【答案】A
【解析】解:∵∠ACB=90°,∠ABC=30°,AC=2,

∴∠A=90°﹣∠ABC=60°,AB=4,BC=2 ,

∵CA=CA1,

∴△ACA1是等邊三角形,AA1=AC=BA1=2,

∴∠BCB1=∠ACA1=60°,

∵CB=CB1,

∴△BCB1是等邊三角形,

∴BB1=2 ,BA1=2,∠A1BB1=90°,

∴BD=DB1= ,

∴A1D= =

所以答案是:A.

【考點(diǎn)精析】通過靈活運(yùn)用含30度角的直角三角形和勾股定理的概念,掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.如圖1中的BD和CE就是兩條三分線.

(1)請(qǐng)你在圖2中畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù)(畫出一種即可);
(2)△ABC中,∠B=30°,AD和DE是△ABC的三分線,點(diǎn)D在BC邊上,點(diǎn)E在AC邊上,且AD=BD,DE=CE,請(qǐng)?jiān)趫D3上畫出示意圖;
(3)在(2)的前提下,設(shè)∠C=x°,試求出x所有可能的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣5,0),對(duì)稱軸為直線x=﹣2,給出四個(gè)結(jié)論:①b2>4ac;②4a+b=0;③函數(shù)圖象與x軸的另一個(gè)交點(diǎn)為(2,0);④若點(diǎn)(﹣4,y1)、(﹣1,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2 . 其中正確結(jié)論是( )

A.②④
B.①④
C.①③
D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′

(1)在給定方格紙中畫出平移后的△A′B′C′;

(2)畫出BC邊上的高線AE;

(3)利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:△A′B′C′的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小慧同學(xué)在計(jì)算122892時(shí),借助計(jì)算器探究兩位數(shù)的平方有否簡(jiǎn)捷的計(jì)算方法.她經(jīng)過探索并用計(jì)算器驗(yàn)證,再用數(shù)學(xué)知識(shí)解釋,得出兩位數(shù)的平方可用豎式計(jì)算法進(jìn)行計(jì)算,如:

其中第一行的“01”“04”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,其結(jié)果不夠兩位的就在十位位置上放上“0”,再把它們并排 排列;第二行的“04”為十位數(shù)與個(gè)位數(shù)積的2倍,占兩個(gè)位置,其結(jié)果不夠兩位的就在十位位置上放上“0”,再把它們按上面的豎式相加就得到了12 2 =144.其中第一行的“64”“81”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,再把它們并排排列;第二行的“144”為十位數(shù)與個(gè)位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892 =7921.

①請(qǐng)你用上述方法計(jì)算752 682(寫出豎式計(jì)算過程)

②請(qǐng)你用數(shù)學(xué)知識(shí)解釋這種兩位數(shù)平方的豎式計(jì)算法合理性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC中,BA=BC,∠ABC=90°,點(diǎn)D在AC上,將△ABD繞點(diǎn)B沿順時(shí)針方向旋轉(zhuǎn)90°后,得到△CBE.

(1)求∠DCE的度數(shù);

(2)若AB=4,CD=3AD,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,∠B30°,∠ACB100°,AE平分∠BAC,求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀后填空:某家燈具廠為了比較甲、乙兩種燈的使用壽命,各抽出8支做試驗(yàn),結(jié)果如下(單位:小時(shí)).
甲:457,438,460,443,464,459,444,451;
乙:466,455,467,439,459,452,464,438.
試說明哪種燈的使用壽命長(zhǎng)?哪種燈的質(zhì)量比較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明過程:

如圖所示,直線ADAB,CD分別相交于點(diǎn)A,D,與ECBF分別相交于點(diǎn)H,G,已知∠1=∠2,∠B=∠C

求證:∠A=∠D

證明:∵∠1=∠2,(已知)∠2=∠AGB   

∴∠1      

ECBF   

∴∠B=∠AEC   

又∵∠B=∠C(已知)

∴∠AEC      

      

∴∠A=∠D   

查看答案和解析>>

同步練習(xí)冊(cè)答案