精英家教網 > 初中數學 > 題目詳情
11、如圖,已知二次函數y1=ax2+bx+c(a≠0)與一次函數y2=kx+m(k≠0)的圖象相交于點A(-2,4),B(8,2),則關于x的不等式ax2+(b-k)x+c-m>0的解集是
x<-2或x>8
分析:先把不等式轉化為兩個函數解析式的表示形式,然后結合圖形,找出二次函數圖象在一次函數上面的自變量的取值就是不等式的解集.
解答:解:ax2+(b-k)x+c-m>0,
可整理為ax2+bx+c>kx+m,
∵兩函數圖象相交于點A(-2,4),B(8,2),
∴不等式的解集是x<-2或x>8.
故答案為:x<-2或x>8.
點評:本題主要考查了二次函數與不等式的關系,解答該題時,要具備很強的讀圖能力.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知二次函數圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數的圖象交于A、B兩點,其中A點坐標為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數的圖象交于E點.
(1)求k,m的值及這個二次函數的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知二次函數圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數的圖象交于點E.
(1)求b的值及這個二次函數的關系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數關系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數的圖象對稱軸的交點,則四邊形DCEP能否構成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知二次函數y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數y=-
12
x2+bx+c
的圖象經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)設該二次函數圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案