【題目】如圖,四邊形是平行四邊形,連接對角線,過點(diǎn)的延長線交于點(diǎn),連接

1)求證:;

2)連結(jié),若,且,求證:四邊形是正方形.

【答案】1)證明見解析,(2)證明見解析.

【解析】

1)根據(jù)平行四邊形的性質(zhì)得:ADBC,AD=BC,又由平行四邊形的判定得:四邊形ACED是平行四邊形,又由平行四邊形的對邊相等可得結(jié)論;

2)根據(jù)(1):四邊形ACED是平行四邊形,對角線互相平分可得:結(jié)合,從而證明AD=AB,即鄰邊相等,證明四邊形為菱形,再證明 從而∠ABC=90°,根據(jù)有一個(gè)角是直角的菱形是正方形可得結(jié)論.

證明:(1)∵四邊形ABCD是平行四邊形,

ADBC,AD=BC,

ACDE

∴四邊形ACED是平行四邊形,

AD=CE

BC=CE;

2)由(1)知:四邊形ACED是平行四邊形,

DF=CF=ABEF=AF,

AD=2CF

AB=AD,

四邊形為平行四邊形,

四邊形為菱形,

ADEC,

∴四邊形ABCD是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,在四邊形ABCD中,∠A=∠C90°ABCD,求證:四邊形ABCD是矩形;

2)如圖②,若四邊形ABCD滿足∠A=∠C90°ABCD,求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AC4,BC3,AB5AD為△ABC的角平分線,則CD的長度為( 。

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,),B(2,0),C點(diǎn)在x軸上運(yùn)動(dòng),過點(diǎn)作直線AC的垂線,垂足為D.當(dāng)點(diǎn)Cx軸上運(yùn)動(dòng)時(shí),點(diǎn)D也隨之運(yùn)動(dòng).則線段BD長的最大值為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標(biāo)系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠肺炎疫情期間,某小區(qū)計(jì)劃購買甲、乙兩種品牌的消毒劑,乙品牌消毒劑每瓶的價(jià)格比甲品牌消毒劑每瓶價(jià)格的3倍少50元,已知用300元購買甲品牌消毒劑的數(shù)量與用400元購買乙品牌消毒劑的數(shù)量相同.

(1)求甲、乙兩種品牌消毒劑每瓶的價(jià)格各是多少元?

(2)若該小區(qū)從超市一次性購買甲、乙兩種品牌的消毒劑共40瓶,且總費(fèi)用為1400元,求購買了多少瓶乙品牌消毒劑?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,以AB為直徑作半圓,點(diǎn)PCD中點(diǎn),BP與半圓交于點(diǎn)Q,連結(jié)DQ,給出如下結(jié)論:①;②;③;④,其中正確結(jié)論是______填寫序號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC內(nèi)任取一點(diǎn)D,連接CD,BD得到△CDB,如果等邊△ABC內(nèi)每一點(diǎn)被取到的可能性都相同,則△CBD是鈍角三角形的概率是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初級中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生年齡情況,隨機(jī)調(diào)查了本校部分學(xué)生的年齡,根據(jù)所調(diào)查的學(xué)生的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖和圖,請根據(jù)相關(guān)信息,解答下列問題:

1)本次接受調(diào)查的學(xué)生人數(shù)為_______,圖 的值為 ;

2)求統(tǒng)計(jì)的這組學(xué)生年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

同步練習(xí)冊答案