【題目】在平面直角坐標(biāo)系中,拋物線與直線均過(guò)原點(diǎn),直線經(jīng)過(guò)拋物線的頂點(diǎn)(2,4),則下列說(shuō)法:①當(dāng)0<x<2時(shí),y2>y1;y2x的增大而增大的取值范圍是x<2;③使得y2大于4x值不存在; ④若y2=2,則x=2﹣x=1.

其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】

根據(jù)圖象得出函數(shù)解析式為y=a(x-2)2+4,再把c=0代入即可得出解析式,根據(jù)二次函數(shù)的性質(zhì)得出答案.

設(shè)拋物線解析式為y=a(x-2)2+4,

∵拋物線與直線均過(guò)原點(diǎn),

a(0-2)2+4=0,

a=-1,

y=-(x-2)2+4,

∴由圖象得當(dāng)0<x<2時(shí),y2>y1,故①正確;

y2x的增大而增大的取值范圍是x<2,故②正確;

∵拋物線的頂點(diǎn)(2,4),

使得y2大于4x值不存在,故③正確;

y=2代入y=-(x-2)2+4,得y2=2,

x=2-x=2+,故④不正確.

其中正確的有3個(gè),

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=4.某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(AB的長(zhǎng))____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某一時(shí)刻太陽(yáng)光從教室窗戶射入室內(nèi),與地面的夾角,窗戶的一部分在教室地面所形成的影長(zhǎng)米,窗戶的高度米.求窗外遮陽(yáng)蓬外端一點(diǎn)到教室窗戶上椽的距離.(參考數(shù)據(jù):,結(jié)果精確米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、 (k>1)的圖象分別交于點(diǎn)A、B,若∠AOB=45°,則AOB的面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠色生態(tài)農(nóng)場(chǎng)生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價(jià)y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.

(1)求該產(chǎn)品銷售價(jià)y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(2)直接寫(xiě)出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;

(3)當(dāng)產(chǎn)量為多少時(shí),這種產(chǎn)品獲得的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+cbc均為常數(shù)的圖象經(jīng)過(guò)兩點(diǎn)A(2,0),B(0,﹣6).

(1)求這個(gè)二次函數(shù)的解析式

(2)若點(diǎn)Cm,0)(m>2)在這個(gè)二次函數(shù)的圖象上連接AB,BC求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,河流兩岸、平行,是河岸上間隔米的兩根電線桿,某人在河岸上的處測(cè)得,然后沿河岸走了米到達(dá)處,測(cè)得,則河流的寬度的值為________(結(jié)果精確到個(gè)位,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技開(kāi)發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2400元,銷售單價(jià)定為3000元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵(lì)商家購(gòu)買該新型產(chǎn)品,公司決定商家一次購(gòu)買這種新型產(chǎn)品不超過(guò)10件時(shí),每件按3000元銷售;若一次購(gòu)買該種產(chǎn)品超過(guò)10件時(shí),每多購(gòu)買一件,所購(gòu)買的全部產(chǎn)品的銷售單價(jià)均降低10元,但銷售單價(jià)均不低于2600元.

(1)商家一次購(gòu)買這種產(chǎn)品多少件時(shí),銷售單價(jià)恰好為2600元?

(2)設(shè)商家一次購(gòu)買這種產(chǎn)品x件,開(kāi)發(fā)公司所獲的利潤(rùn)為y元,求y(元)與x(件)之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

(3)該公司的銷售人員發(fā)現(xiàn):當(dāng)商家一次購(gòu)買產(chǎn)品的件數(shù)超過(guò)某一數(shù)量時(shí),會(huì)出現(xiàn)隨著一次購(gòu)買的數(shù)量的增多,公司所獲的利潤(rùn)反而減少這一情況.為使商家一次購(gòu)買的數(shù)量越多,公司所獲的利潤(rùn)最大,公司應(yīng)將最低銷售單價(jià)調(diào)整為多少元(其它銷售條件不變)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M、N分別在ABAD邊上,若AMMB=ANND=12,則tan∠MCN=

查看答案和解析>>

同步練習(xí)冊(cè)答案