【題目】(題文)某校組織學(xué)生參加“周末郊游”.甲旅行社說:“只要一名學(xué)生買全票,則其余學(xué)生可享受半價(jià)優(yōu)惠.”乙旅行社說:“全體學(xué)生都可按6折優(yōu)惠”.已知全票價(jià)為240元.
(1)設(shè)學(xué)生人數(shù)為x,甲旅行社收費(fèi)為y甲(元),乙旅行社收費(fèi)為y乙(元),用含x的式子表示出y甲與y乙;
(2)就學(xué)生人數(shù)x討論哪一家旅行社更優(yōu)惠.
【答案】(1)y甲=120x+120; y乙=144x.
(2)當(dāng)y甲>y乙,乙旅行社更優(yōu)惠.
當(dāng)y甲=y乙,兩家旅行社一樣優(yōu)惠.
當(dāng)y甲<y乙, 甲旅行社更優(yōu)惠.
【解析】
(1)甲旅行社的收費(fèi)是一人交240元,剩余的人每人交120元,乙旅行社的收費(fèi)是每人交14元.
(2)要分三種情況:y甲y乙,y甲=y乙,y甲<y乙,求滿足要求的學(xué)生人數(shù).
(1)y甲=240+240×0.5(x-1)=120x+120,y乙=240×0.6x=144x.
(2)當(dāng)y甲>y乙,即120x+120>144x時(shí),解得x<5.所以當(dāng)學(xué)生人數(shù)少于5時(shí),乙旅行社更優(yōu)惠.
當(dāng)y甲=y乙,即120x+120=144x時(shí),解得x=5.所以當(dāng)學(xué)生人數(shù)正好是5時(shí),兩家旅行社一樣優(yōu)惠.
當(dāng)y甲<y乙,即120x+120<144x時(shí),解得x>5所以當(dāng)學(xué)生人數(shù)超過5時(shí),甲旅行社更優(yōu)惠.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為a與b、對角線長為c的長方形紙片ABCD,繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到長方形FGCE,連接AF.通過用不同方法計(jì)算梯形ABEF的面積可驗(yàn)證勾股定理,請你寫出驗(yàn)證的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個(gè))
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF.連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E,F(xiàn)分別是邊CB,BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)如圖3,若點(diǎn)E,F(xiàn)分別是邊BC,AB延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小敏做了一個(gè)角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過 點(diǎn)A,C 畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個(gè)三角形全等的依據(jù)是( )
A. SSS B. SAS C. ASA D. AAS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,點(diǎn)M為AB上的一動(dòng)點(diǎn),將矩形ABCD沿某一直線對折,使點(diǎn)C與點(diǎn)M重合,該直線與AB(或BC)、CD(或DA)分別交于點(diǎn)P、Q
(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結(jié)論;
(3)設(shè)AM=x,d為點(diǎn)M到直線PQ的距離,y=d2 ,
①求y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
②當(dāng)直線PQ恰好通過點(diǎn)D時(shí),求點(diǎn)M到直線PQ的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“中國漢字聽寫大會(huì)”是由中央電視臺(tái)和國家語言文學(xué)工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過節(jié)目的播出,能吸引更多的人關(guān)注對漢字文化的學(xué)習(xí),某校開展了一次“漢字聽寫”比賽,每位參賽學(xué)生聽寫40個(gè)漢字,比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽寫結(jié)果,按聽寫正確的漢字個(gè)數(shù)x繪制成了如圖兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問題:
(1)本次共隨機(jī)抽取了名學(xué)生的聽寫結(jié)果,聽寫正確的漢字個(gè)數(shù)x在范圍的人數(shù)最多;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在扇形統(tǒng)計(jì)圖中,請計(jì)算31≤x≤41所對應(yīng)的扇形圓心角的大小;
(4)若該校共有1200名學(xué)生,如果聽寫正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請你估計(jì)該校本次“漢字聽寫”比賽達(dá)到良好的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以平行四邊形ABCO的頂點(diǎn)O為原點(diǎn),邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點(diǎn)A、C的坐標(biāo)分別是(2,4)、(3,0),過點(diǎn)A的反比例函數(shù)y= 的圖象交BC于D,連接AD,則四邊形AOCD的面積是( )
A.6
B.7
C.9
D.10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com