已知:如圖,AB為⊙O的直徑,AC、BC為弦,點P為上一點,AB=10,AC∶BC=3∶4。
(1)當(dāng)點P與點C關(guān)于直線AB對稱時(如圖①),求PC的長;
(2)當(dāng)點P為的中點時(如圖②),求PC的長。
解:(1)在⊙O中,如圖①,
∵AB是直徑,
∴∠ACB=90°,
∵點P與點C關(guān)于AB對稱,
∴PC⊥AB,且CD=DP,
∴由三角形面積得:CD·AB=AC·BC,
∵AB=10,AC∶BC=3∶4,
∴由勾股定理求得AC=6,BC=8
∴CD==4.8,
∴PC=2CD=9.6;
(2)過點B作BE⊥PC于點E,連結(jié)PB,
由(1)得AC=6,BC=8
∵點P為的中點,
∴∠ACP=∠BCP=45°
在Rt△BEC中,可求得CE=BE=,
∵∠A=∠P,∠ACB=∠BEC=90°,
∴tan∠P=tan∠A,


∴PC=CE+EP=。

圖②
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•東陽市模擬)已知:如圖,AB為⊙O的直徑,AC、BC為弦,點P為⊙O上一點,弧AC=弧AP,AB=10,tanA=
3

(1)求PC的長;
(2)過P作⊙O切線交BA延長線于E,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
(1)求∠P的大小;
(2)若AB=6,求PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB為⊙O直徑,AC為弦,M為弧AC上一點,若∠CAB=40度,則∠AMC的度數(shù)為
130°
130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,AB為半圓O的直徑,C、D是半圓上的兩點,E是AB上除O外的一點,AC與DE交于點F.①
AD
=
DC
;②DE⊥AB;③AF=DF.請你寫出以①、②、③中的任意兩個條件,推出第三個(結(jié)論)的一個正確命題.并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,AO為⊙O'的直徑,⊙O的弦AC交⊙O'于D點,OC和BD相交于E點,AB=4,∠CAB=30°.求CE、DE的長.

查看答案和解析>>

同步練習(xí)冊答案