【題目】如圖,在□ABCD 中,∠ADB=90°,點 E 為 AB 邊的中點,點 F 為CD 邊的中點.
(1)求證:四邊形 DEBF 是菱形;
(2)當∠A 等于多少度時,四邊形 DEBF 是正方形?并說明你的理由.
【答案】見解析
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出DC∥AB,DC=AB,求出DF∥BE,DF=BE,得出四邊形DEBF是平行四邊形,求出DE=BE,根據(jù)菱形的判定得出即可;
(2)求出AD=BD,根據(jù)等腰三角形的性質(zhì)得出DE⊥AB,根據(jù)正方形的判定得出即可.
試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴DC∥AB,DC=AB.∵點E為AB邊的中點,點F為CD邊的中點,∴DF∥BE,DF=BE,∴四邊形DEBF是平行四邊形.∵∠ADB=90°,點E為AB邊的中點,∴DE=BE=AE,∴四邊形DEBF是菱形;
(2)當∠A=45°,四邊形DEBF是正方形.理由如下:
∵∠ADB=90°,∠A=45°,∴∠A=∠ABD=45°,∴AD=BD.∵E為AB的中點,∴DE⊥AB,即∠DEB=90°.∵四邊形DEBF是菱形,∴四邊形DEBF是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某月的月歷,用一個矩形框,每次框住9個數(shù).若這9個數(shù)之和是81,則這9個數(shù)中最大的數(shù)為_____,這9個數(shù)之和可能會是100嗎?_____(填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)場要建一個長方形ABCD的養(yǎng)雞場,雞場的一邊靠墻,(墻長25m)另外三邊用木欄圍成,木欄長40m.
(1)若養(yǎng)雞場面積為168m2,求雞場垂直于墻的一邊AB的長.
(2)請問應怎樣圍才能使養(yǎng)雞場面積最大?最大的面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某鎮(zhèn)組織20輛汽車裝運完A、B、C三種臍橙共100噸到外地銷售.按計劃,20輛汽車都要裝運,每輛汽車只能裝運同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問題:
臍 橙 品 種 | A | B | C |
每輛汽車運載量(噸) | 6 | 5 | 4 |
每噸臍橙獲利(百元) | 12 | 16 | 10 |
(1)設裝運A種臍橙的車輛數(shù)為x,裝運B種臍橙的車輛數(shù)為y,求y與x之間的函數(shù)關系式;
(2)如果裝運每種臍橙的車輛數(shù)都不少于4輛,那么車輛的安排方案有幾種?并寫出每種安排方案;
(3)若要使此次銷售獲利最大,應采用哪種安排方案?并求出最大利潤的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某區(qū)教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績?yōu)闃颖荆?/span>A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下
(1)樣本中D級的學生人數(shù)占全班學生人數(shù)的百分比是 ;
(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;
(3)請把條形統(tǒng)計圖補充完整;
(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,平分,平分.
圖1 圖2
(1)如圖1,當在內(nèi)部時
①__________;(填,,)
②求的度數(shù);
(2)如圖2,當在外部時,(1)題②的的度數(shù)是否變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com