【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系xOy.△ABC的三個頂點都在格點上,點A的坐標(biāo)是(4,4),請解答下列問題:
(1)將△ABC向下平移5個單位長度,畫出平移后的A1B1C1,并寫出點A的對應(yīng)點A1的坐標(biāo);
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C.
【答案】(1)作圖見解析;點A1的坐標(biāo)為(4,﹣1);(2)作圖見解析;(3)作圖見解析.
【解析】試題分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C向下平移5個單位的對應(yīng)點A1、B1、C1的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點A1的坐標(biāo);
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于點y軸對稱的對應(yīng)點A2、B2、C2的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點A2的坐標(biāo)即可;
(3)根據(jù)三角形的面積公式求出△ABC的面積.
試題解析:(1)如圖所示,△A1B1C1即為所求作的三角形,點A1的坐標(biāo)(4,-1);
(2)如圖所示,△A2B2C2即為所求作的三角形;A2(-4,-1);
(3)S△ABC=×2×2=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為節(jié)約能源,優(yōu)化電力資源配置,提高電力供應(yīng)的整體效益,國家實行了錯峰用電.某地區(qū)的居民用電,按白天時段和晚間時段規(guī)定了不同的單價.某戶5月份白天時段用電量比晚間時段用電量多,6月份白天時段用電量比5月份白天時段用電量少,結(jié)果6月份的總用電量比5月份的總用電量多,但6月份的電費卻比5月份的電費少,則該地區(qū)晚間時段居民用電的單價比白天時段的單價低的百分數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上, 直線MN: y=x-8沿x軸的負方向以每秒2個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t, m與t的函數(shù)圖象如圖2所示.
(1)若AB=6
①點A的坐標(biāo)為_____________,矩形ABCD的面積為____________.
②求a, b的值;
(2)若AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S與 t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+2與x軸、y軸分別相交于點A、點B,∠BAO=30°,若將△AOB沿直錢CD折疊,使點A與點B重合,折痕CD與x軸交于點C,與AB交于點D.
(1)求k的值;
(2)求點C的坐標(biāo);
(3)求直線CD的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了發(fā)展校園足球運動,某城區(qū)五校決定聯(lián)合購買一批足球服和足球.經(jīng)過市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球服和足球,已知每套足球服比每個足球多60元,兩套足球服與三個足球的費用相等.經(jīng)洽談,甲商場的優(yōu)惠方案是:每購買20套足球服,送一個足球;乙商場的優(yōu)惠方案是:若購買足球服超過80套,則購買的足球打八折,若購買足球服不超過80套,不打折.
(1)求每套足球服和每個足球的價格各是多少元;
(2)若城區(qū)五校聯(lián)合購買120套足球服和()個足球,假如你是本次購買任務(wù)的負責(zé)人,你會選擇到甲、乙兩家中的哪一家商場購買更便宜?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,如圖所示.
(1)∵ (已知),∴__________________ (______).
(2)∵ (已知),∴__________________(______).
(3)∵_________(已知),∴(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當(dāng)=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=6與雙曲線y=(k≠0,且>0)交點A,點A的橫坐標(biāo)為2.
(1)求點A的坐標(biāo)及雙曲線的解析式;
(2)點B是雙曲線上的點,且點B的縱坐標(biāo)是6,連接OB,AB.求三角形△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:四邊形ABDC中,CD=BD,E為AB上一點,連接DE,且∠CDE=∠B.若∠CAD=∠BAD=30°,AC=5,AB=3,則EB=______________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com