【題目】如圖,根據(jù)要求回答下列問題:
(1)點(diǎn)A關(guān)于y軸對稱點(diǎn)A′的坐標(biāo)是 ;點(diǎn)B關(guān)于y軸對稱點(diǎn)B′的坐標(biāo)是
(2)作出△ABC關(guān)于y軸對稱的圖形△A′B′C′(不要求寫作法)
(3)求△ABC的面積.
【答案】(1)(3,2),(4,﹣3);(2)圖形見解析(3)
【解析】試題分析:
(1)對照圖形可知點(diǎn)A、B的坐標(biāo)分別:(-3,2)、(-4,-3),由此寫出點(diǎn)A′、B′的坐標(biāo)即可;
(2)分別作出點(diǎn)A、B、C關(guān)于y軸的對稱點(diǎn)A′、B′、C′,再順次連接這三點(diǎn)即可得到所求三角形;
(3)如圖,由S△ABC=S矩形DBEF-S△ADB-S△BEC-S△AFC,計(jì)算出△ABC的面積即可.
試題解析:
(1)由圖可知:點(diǎn)A、B的坐標(biāo)分別:(-3,2)、(-4,-3),
∴點(diǎn)A、B關(guān)于y軸的對稱點(diǎn)A′和B′的坐標(biāo)分別為:(3,2),(4,﹣3);
(2)如下圖所示;△A′B′C′為所求的圖形;
(3)如圖:
S△ABC=S矩形DBEF-S△ADB-S△BEC-S△AFC
=
=
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在分別標(biāo)有號碼2,3,4…10的9個(gè)球中,隨機(jī)取出2個(gè)球,記下它們的號碼,則較大號能被較小號整除的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,點(diǎn)G是⊙O上一點(diǎn),AG交CD于點(diǎn)K,延長KD至點(diǎn)E,使KE=GE,分別延長EG、AB相交于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)若AC∥EF,試探究KG、KD、GE之間的關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE=,AK=2,求FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程rx2+(r+2)x+r﹣1=0有根只有整數(shù)根的一切有理數(shù)r的值有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形ABC中,點(diǎn)D在斜邊BC上,以AD為直角邊作等腰直角三角形ADE.
(1)求證:△ABD≌△ACE;
(2)求證:BD2+CD2=2AD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.
(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;
(3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)△ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項(xiàng)公益知識競賽,比賽規(guī)定:每個(gè)班級由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個(gè)式子的平方,如:3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得a=________, b=___________.
(2)若a+4=(m+n)2,且a、m、n均為正整數(shù),求a的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com