【題目】計算:|﹣4|+ ﹣ ﹣ cos45°.
【答案】解:原式=4+2﹣1﹣2 × =5﹣2
=3.
【解析】本題涉及絕對值、負(fù)整數(shù)指數(shù)冪、0指數(shù)冪、二次根式化簡、特殊角的三角函數(shù)值等考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.
【考點精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識點,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,將△ABC繞點A順時針旋轉(zhuǎn)40°后,得到△AB′C′,且C′在邊BC上,則∠AC′C的度數(shù)為( )
A.50°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段AB上一點,△ACM、△CBN是等邊三角形,直線AN、MC交于點E,直線BM、CN交于點F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點C按逆時針方向旋轉(zhuǎn)90°,其它條件不變,在圖②中補出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點A、B分別落在坐標(biāo)軸上.O為原點,點A的坐標(biāo)為(6,0),點B的坐標(biāo)為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當(dāng)一個動點到達(dá)終點時,另一個動點也隨之停止運動,設(shè)動點M、N運動的時間為t秒(t>0).
(1)當(dāng)t=3秒時.直接寫出點N的坐標(biāo),并求出經(jīng)過O、A、N三點的拋物線的解析式;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當(dāng)t為何值時,△MNA是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集為;
(2)分式不等式 的解集為;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=﹣2x+b(b≥0)的位置隨b的不同取值而變化.
(1)已知⊙M的圓心坐標(biāo)為(4,2),半徑為2.
當(dāng)b=時,直線l:y=﹣2x+b(b≥0)經(jīng)過圓心M;
當(dāng)b=時,直線l:y=﹣2x+b(b≥0)與⊙M相切;
(2)若把⊙M換成矩形ABCD,其三個頂點坐標(biāo)分別為:A(2,0)、B(6,0)、C(6,2).設(shè)直線l掃過矩形ABCD的面積為S,當(dāng)b由小到大變化時,請求出S與b的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長為a的等邊三角形,求AB的長.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下列結(jié)論:
①△ODC是等邊三角形 ②BC=2AB ③∠AOE=135° ④S△AOE=S△COE
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是O的直徑,AE交O于點E,且與O的切線CD互相垂直,垂足為D.
(1)求證:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半徑;②求tan∠BAE的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com