【題目】順次連接對(duì)角線相等的四邊形的四邊中點(diǎn),所得的四邊形一定是____________.

【答案】菱形

【解析】分析:作出圖形根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得EF=AC,GH=AC,HE=BD,FG=BD,再根據(jù)四邊形的對(duì)角線相等可可知AC=BD,從而得到EF=FG=GH=HE,再根據(jù)四條邊都相等的四邊形是菱形即可得解.

詳解如圖,E、FG、H分別是四邊形ABCD的邊AB、BC、CDDA的中點(diǎn),根據(jù)三角形的中位線定理,EF=AC,GH=ACHE=BD,FG=BD,連接ACBD

∵四邊形ABCD的對(duì)角線相等,AC=BD,所以,EF=FG=GH=HE,所以,四邊形EFGH是菱形.

故答案為:菱形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙兩個(gè)汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

請(qǐng)你根據(jù)上圖填寫下表:

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

8

請(qǐng)你從以下兩個(gè)不同的方面對(duì)甲、乙兩個(gè)汽車銷售公司去年一至十月份的銷售情況進(jìn)行分析:

從平均數(shù)和方差結(jié)合看;

從折線圖上甲、乙兩個(gè)汽車銷售公司銷售數(shù)量的趨勢看分析哪個(gè)汽車銷售公司較有潛力

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點(diǎn),且BE=CF,連接AF,DE交于點(diǎn)O.

求證:(1)△ABF≌△DCE;

(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于函數(shù) 的四個(gè)命題:①當(dāng) 時(shí), 有最小值10;② 為任意實(shí)數(shù), 時(shí)的函數(shù)值大于 時(shí)的函數(shù)值;③若 ,且 是整數(shù),當(dāng) 時(shí), 的整數(shù)值有 個(gè);④若函數(shù)圖象過點(diǎn) ,其中 , ,則 .其中真命題的序號(hào)是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:

(1)已知點(diǎn)A,B,C表示的數(shù)分別為1,2.5,﹣3觀察數(shù)軸,B,C兩點(diǎn)之間的距離為   

與點(diǎn)A的距離為3的點(diǎn)表示的數(shù)是 ;

(2)若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則與B點(diǎn)重合的點(diǎn)表示的數(shù)是   ;

若此數(shù)軸上M,N兩點(diǎn)之間的距離為2015(MN的左側(cè)),且當(dāng)A點(diǎn)與C點(diǎn)重合時(shí),M點(diǎn)與N點(diǎn)也恰好重合,則M,N兩點(diǎn)表示的數(shù)分別是:M:   ,N:   ;

(3)若數(shù)軸上P,Q兩點(diǎn)間的距離為m(PQ左側(cè)),表示數(shù)n的點(diǎn)到P,Q兩點(diǎn)的距離相等,則將數(shù)軸折疊,使得P點(diǎn)與Q點(diǎn)重合時(shí),P,Q兩點(diǎn)表示的數(shù)分別為:P:   ,Q:  (用含m,n的式子表示這兩個(gè)數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方法回顧:在學(xué)習(xí)三角形中位線時(shí),為了探索三角形中位線的性質(zhì),思路如下:

第一步添加輔助線:如圖1,在中,延長分別是的中點(diǎn))到點(diǎn),使得,連接;

第二步證明,再證四邊形是平行四邊形,從而得出三角形中位線的性質(zhì)結(jié)論:____________________________________(請(qǐng)用DE與BC表示)


(2)問題解決:如圖2,在正方形ABCD中,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=2,DF=3,∠GEF=90°,求GF的長.

(3)拓展研究:如圖3,在四邊形ABCD中,∠A=105°,∠D=120°,E為AD的中點(diǎn),G、F分別為AB、CD邊上的點(diǎn),若AG=,DF=2,∠GEF=90°,求GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀理解)

點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)CA、B之間且到A的距離是點(diǎn)CB的距離3倍,那么我們就稱點(diǎn)C{ A,B }的奇點(diǎn).

例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C{ A,B }的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B }的奇點(diǎn),但點(diǎn)D{B,A}的奇點(diǎn).

(知識(shí)運(yùn)用)

如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.

(1)數(shù)   所表示的點(diǎn)是{ M,N}的奇點(diǎn);數(shù)   所表示的點(diǎn)是{N,M}的奇點(diǎn);

(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動(dòng)點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.P點(diǎn)運(yùn)動(dòng)到數(shù)軸上的什么位置時(shí),P、AB中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點(diǎn),BEAGE,DFAGF,連接DE

(1)求證:ABE≌△DAF;

(2)若AF=1,SADE=8,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1、3、6、10 …這樣的數(shù)稱為三角形數(shù),而把1、4、9、16 …這樣的數(shù)稱為正方形數(shù).從下圖中可以發(fā)現(xiàn),任何一個(gè)大于1正方形數(shù)都可以看作兩個(gè)相鄰三角形數(shù)之和.用等式表示第100個(gè)正方形點(diǎn)陣中的規(guī)律_________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案