【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣2mx+m2﹣1與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè))
(1)求拋物線的頂點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
(2)求線段AB的長(zhǎng);
(3)拋物線與y軸交于點(diǎn)C(點(diǎn)C不與原點(diǎn)O重合),若△OAC的面積始終小于△ABC的面積,求m的取值范圍.
【答案】(1)(m,﹣1);(2)2;(3)﹣1<m<3且 m≠1
【解析】
(1)將拋物線配方成頂點(diǎn)式即可得頂點(diǎn)坐標(biāo);
(2)求出y=0時(shí)x的值即可得;
(3)由△OAC與△ABC等高且△OAC的面積小于△ABC的面積,知OA<AB,分點(diǎn)A在x軸的正半軸和點(diǎn)A在x軸的負(fù)半軸解答可得.
解:(1)y=x2﹣2mx+m2﹣1=(x﹣m)2﹣1,
∴頂點(diǎn)為(m,﹣1);
(2)令y=0
∴x2﹣2mx+m2﹣1=0
解得:x1=m﹣1,x2=m+1,
∵點(diǎn) A在點(diǎn)B的左側(cè),
∴A(m﹣1,0),B(m+1,0),
∴AB=(m+1)﹣( m﹣1 )=2;
(3)∵△OAC與△ABC等高
△OAC的面積小于△ABC的面積
∴OA<AB,
①當(dāng)點(diǎn)A在x軸的正半軸上時(shí),
如圖1,
則m﹣1<2,解得:m<3;
②當(dāng)點(diǎn)A在x軸的負(fù)半軸上時(shí),
則1﹣m<2,解得:m>﹣1,
又∵點(diǎn)C不與原點(diǎn)O重合,
∴m 2﹣1≠0,m≠±1,
∴﹣1<m<3且 m≠1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過(guò)A,B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱(chēng)軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿(mǎn)足條件的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在凸四邊形ABCD中,AB=BC=CD,∠ABC+∠BCD=240°.設(shè)∠ABC=α.
(1)利用尺規(guī),以CD為邊在四邊形內(nèi)部作等邊△CDE.(保留作圖痕跡,不需要寫(xiě)作法)
(2)連接AE,判斷四邊形ABCE的形狀,并說(shuō)明理由.
(3)求證:∠ADC=α;
(4)若CD=6,取CD的中點(diǎn)F,連結(jié)AF,當(dāng)∠ABC等于多少度時(shí),AF最大,最大值為多少.(直接寫(xiě)出答案,不需要說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)今“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某興趣小組隨機(jī)調(diào)查了我市50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):
步數(shù) | 頻數(shù) | 頻率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)寫(xiě)出a,b,c,d的值并補(bǔ)全頻數(shù)分布直方圖;
(2)本市約有37800名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?
(3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx﹣3與雙曲線的兩個(gè)交點(diǎn)為A,B,其中A(﹣1,m).
(1)求m的值及直線的表達(dá)式;
(2)若點(diǎn)M為x軸上一個(gè)動(dòng)點(diǎn),且△AMB為直角三角形,直接寫(xiě)出滿(mǎn)足條件的點(diǎn)M的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量山坡上的電線桿PQ的高度,某數(shù)學(xué)活動(dòng)小組的同學(xué)們帶上自制的測(cè)傾器和皮尺來(lái)到山腳下,他們?cè)?/span>A處測(cè)得信號(hào)塔頂端P的仰角是45°,信號(hào)塔底端點(diǎn)Q的仰角為30°,沿水平地面向前走100米到B處,測(cè)得信號(hào)塔頂端P的仰角是60°,求信號(hào)塔PQ得高度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)甲、乙、丙三名業(yè)務(wù)員2018年前5個(gè)月的銷(xiāo)售額(單位:萬(wàn)元)如下表:
月份 銷(xiāo)售額 人員 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 6 | 9 | 10 | 8 | 8 |
乙 | 5 | 7 | 8 | 9 | 9 |
丙 | 5 | 9 | 10 | 5 | 11 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補(bǔ)充完整:
統(tǒng)計(jì)值 數(shù)值 人員 | 平均數(shù)(萬(wàn)元) | 眾數(shù)(萬(wàn)元) | 中位數(shù)(萬(wàn)元) | 方差 |
甲 | 8 | 8 | 1.76 | |
乙 | 7.6 | 8 | 2.24 | |
丙 | 8 | 5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說(shuō)自己的銷(xiāo)售業(yè)績(jī)好,你贊同誰(shuí)的說(shuō)法?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是BC邊的中點(diǎn),BD=2,tanB=.
(1)求AD和AB的長(zhǎng);
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)的媽媽想在自家的院子里用竹籬笆圍一個(gè)面積為4平方米的矩形小花園,媽媽問(wèn)九年級(jí)的小強(qiáng)至少需要幾米長(zhǎng)的竹籬笆(不考慮接縫).
小強(qiáng)根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)做了如下的探究.下面是小強(qiáng)的探究過(guò)程,請(qǐng)補(bǔ)充完整:
建立函數(shù)模型:
設(shè)矩形小花園的一邊長(zhǎng)為x米,籬笆長(zhǎng)為y米.則y關(guān)于x的函數(shù)表達(dá)式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):
根據(jù)函數(shù)的表達(dá)式,得到了x與y的幾組值,如下表:
x | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 |
y | 17 | 10 | 8.3 | 8.2 | 8.7 | 9.3 | 10.8 | 11.6 |
描點(diǎn)、畫(huà)函數(shù)圖象:
如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn)畫(huà)出該函數(shù)的圖象;
觀察分析、得出結(jié)論:
根據(jù)以上信息可得,當(dāng)x=________時(shí),y有最小值.
由此,小強(qiáng)確定籬笆長(zhǎng)至少為________米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com