【題目】如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由.
【答案】(1) y=x2-x-1;(2) D(1,0);(3) P1(2.5,-3.5)、P2(1,-2)、P3(,--1),P4(-,-1).
【解析】
(1)用待定系數(shù)法求得二次函數(shù)的解析式;
(2)設點D的坐標為(m,0), (0<m<2),由△ADE∽△AOC得,從而求得DE的長,通過△CDE的面積公式求得當m=1時,△CDE的面積最大,即可求出點D的坐標;
(3)求出直線BC的解析式,若三角形為等腰三角形,則有三種可能,利用勾股定理從而求得P點的坐標.
解:(1)∵二次函數(shù)的圖像經(jīng)過點A(2,0)C(0,-1)
∴解得:b=-c=-1
∴二次函數(shù)的解析式為
(2)設點D的坐標為(m,0), (0<m<2)
∴ OD=m∴AD=2-m由△ADE∽△AOC得,
∴∴DE=
∴△CDE的面積=××m=
當m=1時,△CDE的面積最大,此時點D的坐標為(1,0)
(3)存在.
由(1)知:二次函數(shù)的解析式為
設y=0則解得:x1=2, x2=-1,
∴點B的坐標為(-1,0) C(0,-1)
設直線BC的解析式為:y=kx+b
∴解得:k=-1,b=-1,
∴直線BC的解析式為:y=-x-1
在Rt△AOC中,∠AOC=90°
OA=2 OC=1,由勾股定理得:AC=
∵點B(-1,0) 點C(0,-1),∴OB=OC ∠BCO=45°
①當以點C為頂點且PC=AC=時,
設P(k, -k-1),過點P作PH⊥y軸于H,
∴∠HCP=∠BCO=45°,CH=PH=∣k∣,在Rt△PCH中
k2+k2=解得k1=,k2=-
∴P1(,-) P2(-,)
②以A為頂點,即AC=AP=
設P(k, -k-1),過點P作PG⊥x軸于G,
AG=∣2-k∣ GP=∣-k-1∣
在Rt△APG中 AG2+PG2=AP2,(2-k)2+(-k-1)2=5 解得:k1=1,k2=0(舍)
∴P3(1, -2) (3分)
(3)AP=CP,此時AP=CP
2x-2x+5=2x
-2x=-5,x=2.5
代入BC方程,y=-3.5
因此P4(2.5,-3.5)
綜上所述,存在四點:P1(2.5,-3.5)、P2(1,-2)、P3(,--1),P4(-,-1).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,連接,將繞點作順時針方向旋轉得到(與重合),且點剛好落在的延長上,與相交于點.
(1)求矩形與重疊部分(如圖1中陰影部分)的面積;
(2)將以每秒2的速度沿直線向右平移,如圖2,當移動到點時停止移動.設矩形與重疊部分的面積為,移動的時間為,請你直接寫出關于的函數(shù)關系式,并指出自變量的取值范圍;
(3)在(2)的平移過程中,是否存在這樣的時間,使得成為等腰三角形?若存在,請你直接寫出對應的的值,若不存在,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC繞點A按順時針方向旋轉45°后得到△AB’C’,若AB=2,則線段BC在上述旋轉過程中所掃過部分(陰影部分)的面積是___________ (結果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到他的側面簡化結構圖圖,支架與坐板均用線段表示,若座板DF平行于地面MN,前支撐架AB與后支撐架AC分別與座板DF交于點E、D,現(xiàn)測得厘米, 厘米, .
求椅子的高度即椅子的座板DF與地面MN之間的距離精確到1厘米
求椅子兩腳B、C之間的距離精確到1厘米參考數(shù)據(jù):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=x,過點A(0,1)作y軸的垂線交直線l于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;……按此作法繼續(xù)下去,則點A2020的坐標為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們帶來了很多便利,初二數(shù)學小組在校內對“你最認可的四大新生事物”進行了調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.
(1)根據(jù)圖中信息求出=___________,=_____________;
(2)請你幫助他們將這兩個統(tǒng)計圖補全;
(3)根據(jù)抽樣調查的結果,請估算全校2000名學生種,大約有多少人最認可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D.
(1)求證:點D是AB的中點;
(2)如圖2,過點D作DE⊥AC于點E,求證:DE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了落實黨的“精準扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運肥料的費用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運肥料的費用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設從A城運往C鄉(xiāng)肥料x噸,總運費為y元,求出最少總運費.
(3)由于更換車型,使A城運往C鄉(xiāng)的運費每噸減少a(0<a<6)元,這時怎樣調運才能使總運費最少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com