【題目】如圖把長方形沿對角線折疊,重合部分為△EBD。

(1) △EBD是等腰三角形嗎?為什么?

(2) 若AB=12cm,BC=18cm,求AE的長。

【答案】(1)等腰三角形(2)5cm

【解析】分析:(1)、根據(jù)AD∥BC得出∠ADB=DBC,根據(jù)折疊圖形得出∠FBD=DBC,從而得出∠FBD=ADB,得出答案;(2)、AE=x,EB=ED=18-x,根據(jù)Rt△ABE的勾股定理得出答案.

詳解:(1)是等腰三角形,

∵AD∥CB , ∴∠ADB=∠DBC, ∵由折疊得∠FBD=∠DBC,

∴∠FBD=∠ADB, ∴△EBD為等腰三角形;

(2)AE=x,EB=ED=18-x, ,解得:x=5, AE=5cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E在邊BC,如果點F是邊AD上的點,那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的運算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結果為24,第二次輸出的結果為12,…,則第2018次輸出的結果為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足 = ,連接AF并延長交⊙O于點E,連接AD,DE,若CF=2,AF=3,給出下列結論:①△ADF∽△AED;②FG=2;③tanE= ;④SDEF=4 ,其中正確的是(
A.①②③
B.②③④
C.①②④
D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為( 。

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別標有數(shù)字:﹣1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.
(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結果;
(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線y= 上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊OA,OC在坐標軸上,點B的坐標為(﹣4,4).點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向點O運動;點Q從點O同時出發(fā),以相同的速度沿x軸的正方向運動,規(guī)定點P到達點O時,點Q也停止運動.連接BP,過P點作BP的垂線,與過點Q平行于y軸的直線l相交于點D.BD與y軸交于點E,連接PE.設點P運動的時間為t(s).

(1)∠PBD的度數(shù)為 ,點D的坐標為 (用t表示);

(2)當t為何值時,△PBE為等腰三角形?

(3)探索△POE周長是否隨時間t的變化而變化?若變化,說明理由;若不變,試求這個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在開展好書伴我成長的讀書活動中,某中學為了解八年級300名學生讀書情況,隨機調查了八年級50名學生讀書的冊數(shù).統(tǒng)計數(shù)據(jù)如下表所示:

(1)求這50個樣本數(shù)據(jù)的平均救,眾數(shù)和中位數(shù).

(2)根據(jù)樣本數(shù)據(jù),估計該校八年級300名學生在本次活動中讀書多于2冊的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5.它們除了數(shù)字外沒有任何區(qū)別.
(1)隨機地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結果,現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
(3)如果不公平請你修改游戲規(guī)則使游戲規(guī)則對甲乙雙方公平.

查看答案和解析>>

同步練習冊答案