【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移2個(gè)單位長度,再向右平移1個(gè)單位長度后得到△A1B1C1,請畫出△A1B1C1,并寫出點(diǎn)A1,B1,C1的坐標(biāo);
(2)求△A1B1C1的面積;
(3)點(diǎn)P在坐標(biāo)軸上,且△A1B1P的面積是2,求點(diǎn)P的坐標(biāo).
【答案】(1)點(diǎn)A1(0,0),B1(﹣1,﹣2),C1(﹣3,1);(2)(3)(2,0)或(﹣2,0)或(0,4)或(0,﹣4)
【解析】
根據(jù)圖形平移坐標(biāo)的特點(diǎn)從而得到結(jié)果.
(1)如圖所示:△A1B1C1,點(diǎn)A1(0,0),B1(﹣1,﹣2),C1(﹣3,1);
(2)△A1B1C1的面積為:3×3﹣×1×3﹣×2×3﹣×1×2=;
(3)若P點(diǎn)在x軸上,設(shè)點(diǎn)P的坐標(biāo)為:(m,0),
∵△A1B1P的面積是: A1P×2=|m﹣0|×2=2,
∴解得:m=±2,
∴P的坐標(biāo)為:(2,0),(﹣2,0),
若點(diǎn)P在y軸上,設(shè)點(diǎn)P的坐標(biāo)為:(0,n),
∴A1P×1=|n﹣0|=2,
解得:n=±4,
∴P的坐標(biāo)為:(0,4)或(0,﹣4),
綜上所述:P點(diǎn)坐標(biāo)為:(2,0)或(﹣2,0)或(0,4)或(0,﹣4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).
(1)求A,B兩點(diǎn)的坐標(biāo)和此拋物線的對(duì)稱軸;
(2)設(shè)此拋物線的頂點(diǎn)為C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求四邊形ACBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BD,CE分別是∠ABC,∠ACB平分線,BD,CE相交于點(diǎn)P.
(1)如圖1,如果∠A=60°,∠ACB=90°,則∠BPC= ;
(2)如圖2,如果∠A=60°,∠ACB不是直角,請問在(1)中所得的結(jié)論是否仍然成立?若成立,請證明:若不成立,請說明理由.
(3)小月同學(xué)在完成(2)之后,發(fā)現(xiàn)CD、BE、BC三者之間存在著一定的數(shù)量關(guān)系,于是她在邊CB上截取了CF=CD,連接PF,可證△CDP≌△CFP,請你寫出小月同學(xué)發(fā)現(xiàn),并完成她的說理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的函數(shù)y=ax2+(a+2)x+a+1的圖象與x軸只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2x+=0有實(shí)數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于x的二次函數(shù)y=x2+2x+的圖象向下平移9個(gè)單位,求平移后的圖象的表達(dá)式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),直線y=kx+b(k>0)過點(diǎn)B,且與拋物線的另一個(gè)交點(diǎn)為C,直線BC上方的拋物線與線段BC組成新的圖象,當(dāng)此新圖象的最小值大于﹣5時(shí),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)棱長為的正方體的每個(gè)面等分成個(gè)小正方形,然后沿每個(gè)面正中心的一個(gè)正方形向里挖空(相當(dāng)于挖去個(gè)小正方體),所得到的幾何體的表面積是( )
A. 78 B. 72 C. 54 D. 48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1+∠2=180°,∠3=∠B,∠4=65°,求證∠ACB=∠4.請?zhí)羁胀?/span>
成證明過程:
∵∠1+∠2=180°( )∠1+∠______=180°
∴∠2=∠DFE( )
∴AB∥EF( )
∴∠3=∠ADE( )
又∵∠3=∠B
∴∠ADE=∠_______
∴DE∥BC( )
∴∠ACB=∠4( )
∴∠ACB=65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到矩形AB'C'D'的位置,旋轉(zhuǎn)角為(0°<<90°).若∠1=112°,則∠的大小是( )
A. 22° B. 20° C. 28° D. 68°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,O是AC的中點(diǎn),AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com