【題目】已知:正方形繞點順時針旋轉至正方形,連接.
(1)如圖,求證:;
(2)如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉角.
【答案】(1)證明見解析;(2).
【解析】
(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEACΔDAF,根據全等三角形的性質即可得CE=DF;(2)由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
(1)證明:連接,
∵正方形旋轉至正方形
∴,
∴
∴
在和中,
,
∴
∴
(2).∠DAG、∠BAE、∠FMC、∠CNF;
由旋轉的性質可得∠DAG、∠BAE都是旋轉角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,為坐標原點,點在軸的正半軸上,四邊形是四邊形,,反比例函數(shù)在第一象限內的圖像經過點,與交于點
(1)若,求反比例函數(shù)解析式;
(2)若點為的中點,且的面積,求的長和點的坐標;
(3)在(2)中的條件下,過點作,交于點(如圖②),點為直線上的一個動點,連接,是否存在這樣的點,使以為頂點的三角形的直角三角形?若存在,請直接寫出所有點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于的一元二次方程.
(1)當時,利用根的判別式判斷方程根的情況,
(2)若方程有兩個相等的非零實數(shù)根,寫出一組滿足條件的的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線分別與x軸、y軸交于點和點B,直線分別與x軸、y軸交于點C和點D,兩直線交于第一象限內的點E,并且點D為的中點。
(1)求直線的解析式;
(2)過點D作軸,交直線于點F,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學興趣小組的小穎想測量教學樓前的一棵樹的樹高,下午課外活動時她測得一根長為1m的竹竿的影長是0.5m,但當她馬上測量樹高時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學樓的墻壁上(如圖),她先測得留在墻壁上的影高為1m,又測得地面的影長為1.5m,請你幫她算一下,樹高為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.
(1)他把“□”猜成3,請你解二元一次方程組;
(2)張老師說:“你猜錯了”,我看到該題標準答案的結果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.
例如,如圖1,正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,2為半徑的圓,那么點O(0,0)到⊙P的距離為 ;
(2)①求點M(3,0)到直線了y=x+4的距離:
②如果點N(0,a)到直線y=x+4的距離為2,求a的值;
(3)如果點G(0,b)到拋物線y=x2的距離為3,請直接寫出b的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com