【題目】如圖1,點(diǎn)D為直角三角形ABC的斜邊AB上的中點(diǎn),DEABACE, EB、CD,線段CDBF交于點(diǎn)F.tanA=,=_____.如圖2,點(diǎn)D為直角三角形ABC的斜邊AB上的一點(diǎn),DEABACE, EB、CD;線段CDBF交于點(diǎn)F.,tanA=,則=____.

【答案】

【解析】

設(shè)AC=8a,DEAB,tanA═

DE=AD,

RtABC,AC═a,tanA═,

BC=,AB==

又∵AED沿DE翻折,A恰好與B重合,

AD=BD= ,DE= ,

RtADE,AE== ,

CE=8a-5a=3a,

RtBCE,BE==5a,

如圖,過(guò)點(diǎn)CCGBEG,作DHBEH,則

RtBDE,DH==2a,

RtBCE,CG== ,

CGDH

CFGDFH,

故答案為:65.

2)若,tanA=,

AD= , BD= DE= ,

RtADE,AE== ,

CE=8a- = ,

RtBCE,BE== ,

如圖,過(guò)點(diǎn)CCGBEG,作DHBEH,則

RtBDE,DH== ,

RtBCE,CG== ,

CGDH,

CFGDFH

,

故答案為:4415.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE∠1=∠2

1)求證:BD=CE;

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣3,0),點(diǎn)Bx軸上異于點(diǎn)A一動(dòng)點(diǎn),設(shè)Bx,0),以AB為邊在x軸的上方作正方形ABCD

1)如圖(1),若點(diǎn)B1,0),則點(diǎn)D的坐標(biāo)為  ;

2)若點(diǎn)EAB的中點(diǎn),∠DEF90°,且EF交正方形外角的平分線BFF

如圖(2),當(dāng)x0時(shí),求證:DEEF;

若點(diǎn)F的縱坐標(biāo)為y,求y關(guān)于x的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)A與點(diǎn)D的坐標(biāo)分別是A(4,0),D(10,0).

(1)如圖,當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),求直線BD的表達(dá)式;

(2)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)以點(diǎn)B為圓心,AB為半徑的By軸相切(切點(diǎn)為C)時(shí),求點(diǎn)B的坐標(biāo);

(3)如圖,點(diǎn)C從點(diǎn)O沿y軸向下移動(dòng),當(dāng)點(diǎn)C的坐標(biāo)為C(0,-2)時(shí),ODB的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10 ,點(diǎn)E是點(diǎn)D關(guān)于AB的對(duì)稱點(diǎn),MAB上的一動(dòng)點(diǎn),下列結(jié)論:①∠BOE=60°;②∠CED=AOD;DMCE;CM+DM的最小值是10,其中正確的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線試紙y=ax2+bx+cx軸交于點(diǎn)A,C,與y軸交于點(diǎn)B.已知點(diǎn)A坐標(biāo)為(8,0),點(diǎn)B(08),點(diǎn)D為(03),tanDCO=,直線AB和直線CD相交于點(diǎn)E.

求拋物線的解析式,并化成y=a(x-m)2+h的形式;

設(shè)拋物線的頂點(diǎn)為G,請(qǐng)?jiān)谥本AB上方的拋物線上求點(diǎn)P的坐標(biāo),使得SABP=SABG.

點(diǎn)M為直線AB上的一點(diǎn),過(guò)點(diǎn)Mx軸的平行線分別交直線AB,CD于點(diǎn)M,N,連結(jié)DM,DN,是否存在點(diǎn)M,使得DMN為等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABC,DAC邊上一點(diǎn),且DADB,OAB的中點(diǎn),CE是△BCD的中線.

(1)如圖a,連接OC,請(qǐng)直接寫出∠OCE和∠OAC的數(shù)量關(guān)系:   

(2)點(diǎn)M是射線EC上的一個(gè)動(dòng)點(diǎn),將射線OM繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點(diǎn)N

①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;

②若∠BAC30°,BCm,當(dāng)∠AON15°時(shí),請(qǐng)直接寫出線段ME的長(zhǎng)度(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園的門票每張20元,一次性使用.考慮到人們的不同需求,也為了吸引更多的游客,該公園除保留原來(lái)的售票方法外,還推出了一種購(gòu)買個(gè)人年票(個(gè)人年票從購(gòu)買日起,可供持票者使用一年)的售票方法.年票分A,BC三類,A類年票每張240元,持票進(jìn)入該園區(qū)時(shí),無(wú)需再購(gòu)買門票;B類年票每張120元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次4元;C類年票每張80元,持票者進(jìn)入該園區(qū)時(shí),需再購(gòu)買門票,每次6.

1)如果只能選擇一種購(gòu)買年票的方式,并且計(jì)劃在一年中花費(fèi)160元在該公園的門票上,通過(guò)計(jì)算,找出可進(jìn)入該園區(qū)次數(shù)最多的方式.

2)一年中進(jìn)入該公園超過(guò)多少次時(shí),A類年票比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長(zhǎng)為(  )

A. 13B. 14C. 15D. 16

查看答案和解析>>

同步練習(xí)冊(cè)答案