過(guò)點(diǎn)(1,0),B(3,0),C(-1,2)三點(diǎn)的拋物線(xiàn)的頂點(diǎn)坐標(biāo)是


  1. A.
    (1,2)
  2. B.
    (1,數(shù)學(xué)公式
  3. C.
    (-1,5)
  4. D.
    (2,數(shù)學(xué)公式
D
分析:利用待定系數(shù)法求解.
解答:設(shè)拋物線(xiàn)為y=ax2+bx+c,把(1,0),B(3,0),C(-1,2)代入得,

解得,
∵-=2,=-
∴頂點(diǎn)坐標(biāo)是(2,).
故選D.
點(diǎn)評(píng):會(huì)利用待定系數(shù)法求方程,熟練運(yùn)用頂點(diǎn)公式和解三元一次方程組.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E.求證:DE是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線(xiàn)y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線(xiàn)的對(duì)稱(chēng)軸;
(2)連接BC,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線(xiàn)于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線(xiàn)段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角坐標(biāo)系中,點(diǎn)A(2,0),點(diǎn)B(0,4),AB的垂直平分線(xiàn)交AB于C,交x精英家教網(wǎng)軸于D,
(1)求點(diǎn)C、D的坐標(biāo);
(2)求過(guò)點(diǎn)B、C、D的拋物線(xiàn)的解析式;
(3)點(diǎn)P為CD間的拋物線(xiàn)上一點(diǎn),求當(dāng)點(diǎn)P在何處時(shí),以P,C,D,B為頂點(diǎn)的四邊形的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,PA切⊙O于點(diǎn)A,PC過(guò)點(diǎn)O且于點(diǎn)B、C,若PA=6cm,PB=4cm,則⊙O的半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=
4
x
的圖象與拋物線(xiàn)y=x2+(9m+4)x+m-精英家教網(wǎng)1交于點(diǎn)A(3,n).
(1)求n的值及拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)A作直線(xiàn)BC,交x軸于點(diǎn)B,交反比例函數(shù)y=
4
x
(x>0)的圖象于點(diǎn)C,且AC=2AB,求B、C兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),且點(diǎn)P到x軸和直線(xiàn)BC的距離相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案