精英家教網(wǎng)如圖,兩個(gè)全等的Rt△ABC、Rt△EDC的直角頂點(diǎn)放置在一起,∠B=∠D=30°,AB與CD交于點(diǎn)M,ED與BC交于點(diǎn)N,AB與ED交于點(diǎn)F.
(1)求證:△ACM≌△ECN;
(2)當(dāng)∠MCN=30°時(shí),找出MD與MF的數(shù)量關(guān)系,并加以說(shuō)明.
分析:(1)欲證△ACM≌△ECN,可先由Rt△ABC、Rt△EDC全等的關(guān)系得出∠A=∠E,AC=CE又由∠ACM=∠ECN=90°-∠MCN可得出∠ACM=∠ECN即可由ASA得證;
(2)可由各角之間的數(shù)量關(guān)系先求出∠MFD=90°,再由∠D=30°可得出MD=2MF的數(shù)量關(guān)系;
解答:(1)證明:∵∠B=∠D,
∴∠A=∠E,
又∵AC=EC,
∠ACM=∠ECN=90°-∠MCN
在△ACM和△ECN中
∠A=∠E
AC=EC
∠ACM=∠ECN
,
∴△ACM≌△ECN(ASA);

(2)解:在Rt△ABC中,
∵∠B=30°,∠MCN=30°,
∴∠DMF=∠MCN+∠B=30°+30°=60°.
∵∠D=30°,
∴∠DFM=90°.
∴△MDF是直角三角形且∠D=30°.
∴MD=2MF.
點(diǎn)評(píng):三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法去判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)全等的Rt△ABC和Rt△DEF重疊在一起,其中∠A=60°,∠ACB=∠DFE=90°且AC=1.固定△ABC不動(dòng),將△DEF作如下操作:
(1)如圖1,△DEF沿線段AB向右平移(即D點(diǎn)在線段AB內(nèi)移動(dòng)),連接DC、CF、FB,四邊形CDBF的面積會(huì)變嗎?若不變請(qǐng)求出其面積;
精英家教網(wǎng)精英家教網(wǎng)
(2)如圖2,當(dāng)D點(diǎn)移到AB中點(diǎn)時(shí),連接DC、CF、FB,BC與DF相交于點(diǎn)O.除Rt△ABC≌Rt△DEF外,請(qǐng)找出圖中其他所有全等三角形,不必寫(xiě)理由;
(3)如圖3,△DEF的D點(diǎn)固定在AB的中點(diǎn),然后繞D點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)△DEF,使DF落在AB邊上,此時(shí)F點(diǎn)恰好與B點(diǎn)重合,連接AE,求:sin∠α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)全等的Rt△ABC和Rt△EDA如圖放置,點(diǎn)B、A、D在同一條直線上.
操作:在圖中,作∠ABC的平分線BF,過(guò)點(diǎn)D作DF⊥BF,垂足為F,連接CE.證明BF⊥CE.
探究:線段BF、CE的關(guān)系,并證明你的結(jié)論.
說(shuō)明:如果你無(wú)法證明探究所得的結(jié)論,可以將“兩個(gè)全等的Rt△ABC和Rt△EDA”改為“兩個(gè)全等的等腰直角△ABC和等腰直角△EDA(點(diǎn)C、A、E在同一條直線上)”,其他條件不變,完成你的證明,此證明過(guò)程最多得2分.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)一模)如圖,把兩個(gè)全等的Rt△AOB和Rt△ECD分別置于平面直角坐標(biāo)系xOy中,使點(diǎn)E與點(diǎn)B重合,直角邊OB、BC在y軸上.已知點(diǎn)D (4,2),過(guò)A、D兩點(diǎn)的直線交y軸于點(diǎn)F.若△ECD沿DA方向以每秒
2
個(gè)單位長(zhǎng)度的速度勻速平移,設(shè)平移的時(shí)間為t(秒),記△ECD在平移過(guò)程中某時(shí)刻為△E′C′D′,E′D′與AB交于點(diǎn)M,與y軸交于點(diǎn)N,C′D′與AB交于點(diǎn)Q,與y軸交于點(diǎn)P(注:平移過(guò)程中,點(diǎn)D′始終在線段DA上,且不與點(diǎn)A重合).
(1)求直線AD的函數(shù)解析式;
(2)試探究在△ECD平移過(guò)程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個(gè)最大值及t的取值;若不存在,請(qǐng)說(shuō)明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標(biāo)軸有兩個(gè)公共點(diǎn)時(shí)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,兩個(gè)全等的Rt△ABC、Rt△EDC的直角頂點(diǎn)放置在一起,∠B=∠D=30°,AB與CD交于點(diǎn)M,ED與BC交于點(diǎn)N,AB與ED交于點(diǎn)F.
(1)求證:△ACM≌△ECN;
(2)當(dāng)∠MCN=30°時(shí),找出MD與MF的數(shù)量關(guān)系,并加以說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案