如圖,延長⊙O的半徑OA到B,使OA=AB,DE是圓的一條切線,E是切點,過點B作DE的垂線,垂足為點C.
求證:∠ACB=
1
3
∠OAC.
證明:連接OE、AE,并過點A作AF⊥DE于點F,(3分)
∵DE是圓的一條切線,E是切點,
∴OE⊥DC,(1分)
又∵BC⊥DE,
∴OEAFBC.(1分)
∴∠1=∠ACB,∠2=∠3.(1分)
∵OA=OE,
∴∠4=∠3.(1分)
∴∠4=∠2.(1分)
又∵點A是OB的中點,
∴點F是EC的中點.(1分)
∴AE=AC.(1分)
∴∠1=∠2.(1分)
∴∠4=∠2=∠1.(1分)
即∠ACB=
1
3
∠OAC.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,O是AB上一點,以O(shè)為圓心,OB為半徑的圓與AB交于E,與AC切于點D,直線ED交BC的延長線于F.
(1)求證:BC=FC;
(2)若AD:AE=2:1,求cot∠F的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O(shè)為圓心,OA長為半徑的圓與AC,AB分別交于點D,E,且∠CBD=∠A.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AD:AO=8:5,BC=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,過點C的切線與AB的延長線相交于點D,AE⊥DC交DC于點E.
(1)求證:AC是∠EAB的平分線;
(2)若BD=2,DC=4,求AE和BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點,連AB,且PA,PB的長是方程x2-2mx+3=0的兩根,AB=m.試求:
(1)⊙O的半徑;
(2)由PA,PB,
AB
圍成圖形(即陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,△ABC中,以AB為直徑的⊙O交AC于點D,且D為AC的中點,過D作DE丄CB,垂足為E.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)已知CD=4,CE=3,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC⊥AB于點B,連接OC交⊙O于點E,弦ADOC,弦DF⊥AB于點G.
(1)求證:點E是
BD
的中點;
(2)求證:CD是⊙O的切線;
(3)若sin∠BAD=
4
5
,⊙O的半徑為5,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB、CD是⊙O的兩條平行弦,BEAC交CD于E,過A點的切線交DC延長線于P,若AC=3
2
,則PC•CE的值是( 。
A.18B.6C.6
2
D.9
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

直線與圓的位置關(guān)系有三種分別是______,______,______.

查看答案和解析>>

同步練習冊答案