【題目】如圖,直角坐標系xOy中,A(0,5),直線x=﹣5與x軸交于點D,直線y=﹣ x﹣ 與x軸及直線x=﹣5分別交于點C,E,點B,E關(guān)于x軸對稱,連接AB.

(1)求點C,E的坐標及直線AB的解析式;
(2)設(shè)面積的和S=S△CDE+S四邊形ABDO , 求S的值;
(3)在求(2)中S時,嘉琪有個想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積不更快捷嗎?”但大家經(jīng)反復(fù)演算,發(fā)現(xiàn)S△AOC≠S,請通過計算解釋他的想法錯在哪里.

【答案】
(1)

解:在直線y=﹣ x﹣ 中,

令y=0,則有0=﹣ x﹣

∴x=﹣13,

∴C(﹣13,0),

令x=﹣5,則有y=﹣ ×(﹣5)﹣ =﹣3,

∴E(﹣5,﹣3),

∵點B,E關(guān)于x軸對稱,

∴B(﹣5,3),

∵A(0,5),

∴設(shè)直線AB的解析式為y=kx+5,

∴﹣5k+5=3,

∴k= ,

∴直線AB的解析式為y= x+5


(2)

解:由(1)知,E(﹣5,﹣3),

∴DE=3,

∵C(﹣13,0),

∴CD=﹣5﹣(﹣13)=8,

∴S△CDE= CD×DE=12,

由題意知,OA=5,OD=5,BD=3,

∴S四邊形ABDO= (BD+OA)×OD=20,

∴S=S△CDE+S四邊形ABDO=12+20=32


(3)

解:由(2)知,S=32,

在△AOC中,OA=5,OC=13,

∴S△AOC= OA×OC= =32.5,

∴S≠S△AOC,

理由:由(1)知,直線AB的解析式為y= x+5,

令y=0,則0= x+5,

∴x=﹣ ≠﹣13,

∴點C不在直線AB上,

即:點A,B,C不在同一條直線上,

∴S△AOC≠S


【解析】(1)利用坐標軸上點的特點確定出點C的坐標,再利用直線的交點坐標的確定方法求出點E坐標,進而得到點B坐標,最后用待定系數(shù)法求出直線AB解析式;(2)直接利用直角三角形的面積計算方法和直角梯形的面積的計算即可得出結(jié)論,(3)先求出直線AB與x軸的交點坐標,判斷出點C不在直線AB上,即可.
【考點精析】認真審題,首先需要了解一次函數(shù)的性質(zhì)(一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線的解析表達式為:y=-3x+3,且與x軸交于點D,直線經(jīng)過點A,B,直線,交于點C.

(1)求點D的坐標;

(2)求直線的解析表達式;

(3)求ADC的面積;

(4)在直線上存在異于點C的另一點P,使得ADP的面積是ADC面積的2倍,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在現(xiàn)實生活中,我們會看到許多“標準”的矩形,如我們的課本封面、A4的打印紙等,其實這些矩形的長與寬之比都為 :1,我們不妨就把這樣的矩形稱為“標準矩形”,在“標準矩形”ABCD中,P為DC邊上一定點,且CP=BC,如圖所示.
(1)如圖①,求證:BA=BP;

(2)如圖②,點Q在DC上,且DQ=CP,若G為BC邊上一動點,當△AGQ的周長最小時,求 的值;

(3)如圖③,已知AD=1,在(2)的條件下,連接AG并延長交DC的延長線于點F,連接BF,T為BF的中點,M、N分別為線段PF與AB上的動點,且始終保持PM=BN,請證明:△MNT的面積S為定值,并求出這個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線EFx,y軸子點F,E,交反比例函數(shù)(x>0)圖象于點C,D,OE=OF=,以CD為邊作矩形ABCD,頂點AB恰好落在y軸與x軸上.

(1)若矩形ABCD是正方形,求CD的長

(2)若AD:DC=2:1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點A,B,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應(yīng)的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點E是BC的中點.將紙片沿直線AE折疊,點B落在四邊形AECD內(nèi),記為點B.則線段BC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C為線段AB上一點,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;

(2)若AC+BC=acm,其他條件不變,直接寫出線段MN的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD,AB=AC,E、F分別是BC、AD的中點,連接AE、CF

(1)填空∠B=_______°;

(2)求證:四邊形AECF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(-8,0),點A的坐標為(-6,0).

(1)求k的值;

(2)若點P(x,y)是該直線上的一個動點,探究:當OPA的面積為27時,求點P的坐標.

查看答案和解析>>

同步練習冊答案