(2013•安慶一模)如圖,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,2).
①畫出△OAB向下平移3個單位后的△O1A1B1
②畫出△OAB繞點O逆時針旋轉(zhuǎn)90°后的△OA2B2,并求點A旋轉(zhuǎn)到點A2所經(jīng)過的路線長(結(jié)果保留π).

【答案】分析:(1)將點O、A、B分別向下平移3個單位,得O1、A1、B1,順次連接這三點即可.
(2)將線段OA、OB逆時針旋轉(zhuǎn)90°,可得OA2、OB2,連接A2B2即可;A點旋轉(zhuǎn)到點A2所經(jīng)過的路程為:以O(shè)為圓心、OA長為半徑、圓心角為90°的弧長.
解答:解:如圖;

點A旋轉(zhuǎn)到點A2所經(jīng)過的路線長=
點評:此題主要考查了平移變換及旋轉(zhuǎn)變換的作圖方法以及弧長的計算方法,難度不大.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•安慶一模)如圖,AB為圓O的直徑,AB=AC,AC交圓O于點D,∠BAC=45°,則∠DBC的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安慶一模)我們定義
ab
cd
=ad+bc
,例如
23
45
=2×5+3×4
=22,若x滿足-2≤
-42
3x
<2,則整數(shù)x的值有(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安慶一模)如圖,反映的是我市某中學八年級(8)班學生參加音樂、美術(shù)、體育課外興趣小組人數(shù)的直方圖(部分)和扇形分布圖,則下列說法錯誤的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•安慶一模)矩形ABCD中,AD=4cm,AB=3cm,動點E從點C開始沿邊CB向點B以2cm/s的速度運動至點B停止,動點F從點D同時出發(fā)沿邊DC向點C以1cm/s的速度運動至點C停止,如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2
(1)請求出y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)試求出y的最小值;
(3)是否存在某一時間x,使得矩形ABCD去掉矩形CFHE后剩余部分的面積為原矩形面積的一半?若存在,求出此時x值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•安慶一模)閱讀下列解題過程,并解答后面的問題:
如圖1,在平面直角坐標系xOy中,A(x1,y1),B(x2,y2),C為線段AB的中點,求C點的坐標.
解:分布過A、C做x軸的平行線,過B、C做y軸的平行線,兩組平行線的交點如圖1所示.
設(shè)C(x0,y0),則D(x0,y1),E(x2,y1),F(xiàn)(x2,y0
由圖1可知:x0=
x2-x1
2
+x1
=
x1+x2
2

y0=
y2-y1
2
+x1
=
y1+y2
2

∴(
x1+x2
2
,
y1+y2
2

問題:(1)已知A(-1,4),B(3,-2),則線段AB的中點坐標為
(1,1)
(1,1)

(2)平行四邊形ABCD中,點A、B、C的坐標分別為(1,-4),(0,2),(5,6),求點D的坐標.
(3)如圖2,B(6,4)在函數(shù)y=
1
2
x+1的圖象上,A(5,2),C在x軸上,D在函數(shù)y=
1
2
x+1的圖象上,以A、B、C、D四個點為頂點構(gòu)成平行四邊形,直接寫出所有滿足條件的D點的坐標.

查看答案和解析>>

同步練習冊答案