【題目】如圖,在Rt△ABC中,∠C=90°,AE是△ABC的角平分線.AE的垂直平分線交AB于點O,以點O為圓心,OA為半徑作⊙O,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若AC=2,tanB,求⊙O的半徑r的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,求C′B的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是射線y═(x≥0)上一點,過點A作AB⊥x軸于點B,以AB為邊在其右側(cè)作正方形ABCD,過點A的雙曲線y=交CD邊于點E,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設(shè)運動的時間為t秒(0<t<5),解答下列問題:
(1)當為t何值時,PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;
(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】AD是△ABC的中線,G是AD上任意一點時(點G不與A重合),過點G的直線交邊AB于E,交射線AC于點F,設(shè)AE=xAB,AF=yAC(x、y≠0).
(1)如圖1,若點G與D重合,△ABC為等邊三角形,且∠BDE=30°,證明:△AEF∽△DEA;
(2)如圖2,若點G與D重合,證明:=2;
(3)如圖3,若AG=nAD,x=,y=,直接寫出n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,點M在△ABC內(nèi),AM平分∠BAC.點E與點M在AC所在直線的兩側(cè),AE⊥AB,AE=BC,點N在AC邊上,CN=AM,連接ME,BN.
(1)補全圖形;
(2)求ME:BN的值;
(3)問:點M在何處時BM+BN取得最小值?確定此時點M的位置,并求此時BM+BN的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,等邊△ABC,點 E 在 BA 的延長線上,點 D 在 BC 上,且 ED=EC.
(1)如圖 1,求證:AE=DB;
(2)如圖 2,將△BCE 繞點 C 順時針旋轉(zhuǎn) 60°至△ACF(點 B、E 的對應(yīng)點分別為點 A、F),連接 EF.在不添加任何輔助線的情況下,請直接寫出圖中四對線段,使每對線段長度之差等于 AB 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在反比例函數(shù)y=(x<0)的圖象上,點B在X軸的負半軸上,AB=AO=13,線段OA的垂直平分線交線段AB于點C,△BOC的周長為23,則k的值為( )
A.60B.30C.-60D.-30
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點,其中A點的坐標為(3,4),B點在軸上.
(1)求m的值及這個二次函數(shù)的解析式;
(2)若P(,0) 是軸上的一個動點,過P作軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點.
①當0<< 3時,求線段DE的最大值;
②若直線AB與拋物線的對稱軸交點為N,問是否存在一點P,使以M、N、D、E為頂點的四邊形是平行四邊形?若存在,請求出此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com