【題目】如圖,在平面直角坐標系 中,雙曲線 與直線 交于點A(3,1).

(1)求直線和雙曲線的解析式;
(2)直線 與x軸交于點B,點P是雙曲線 上一點,過點P作直線PC∥x軸,交y軸于點C,交直線 于點D.若DC=2OB,直接寫出點 的坐標為

【答案】
(1)解:∵直線 過點A(3, 1),

∴直線的解析式為

∵雙曲線 過點A(3,1),

∴雙曲線的解析式為


(2)
【解析】解:(2)①∵PC//x軸,DC=2OB,

∴CF=2OF,

由直線y=x-2可知F(0.-2),

∴OF=2,

∴CF=4.

∴C的坐標為(0,2)或(0,-6),

∴P的縱坐標為2或-6,

代入y= 得,2= ,解得x= ,-6= ,解得x=-

∴P( ,2)或(- ,-6)。

所以答案是:P( ,2)或(- ,-6)。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,O在直線MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=則∠BOC=_______,∠AOM=_______,∠BON=_________;

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)將∠AOB繞著點O順時針轉到圖2的位置,其他條件不變,若∠AOC=(為鈍角),求∠BON的度數(shù)(用含的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD為等腰梯形,AD∥BC,AB=CD,AD= ,E為CD中點,連接AE,且AE=2 ,∠DAE=30°,作AE⊥AF交BC于F,則BF=( )

A.1
B.3﹣
C. ﹣1
D.4﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一張邊長為的正方形硬紙板,把它的四個角都剪去一個邊長為工(為正整數(shù))的小正方形,然后把它折成一個無蓋的長方體,設長方體的容積為,請回答下列問題:

1)用含有的代數(shù)式表示,則

2)完成下表:

1

2

3

4

5

6

7

3)觀察上表,當取什么值時,容積的值最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一個長為、寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖②的形狀拼成一個正方形.

1)圖②中的陰影部分的面積為

2)觀察圖②,請你寫出代數(shù)式之間的等量關系式

3)若

4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖③,它表示

5)試畫出一個幾何圖形,使它的面積能表示

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,定義直線 與雙曲線 的交點 (m、n為正整數(shù))為 “雙曲格點”,雙曲線 在第一象限內(nèi)的部分沿著豎直方向平移或以平行于 軸的直線為對稱軸進行翻折之后得到的函數(shù)圖象為其“派生曲線”.

(1)①“雙曲格點” 的坐標為;
②若線段 的長為1個單位長度,則n=
(2)圖中的曲線 是雙曲線 的一條“派生曲線”,且經(jīng)過點 ,則 的解析式為 y=
(3)畫出雙曲線 的“派生曲線”g(g與雙曲線 不重合),使其經(jīng)過“雙曲格點” 、 、

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系xoy中,一次函數(shù)y= x+3的圖象與x軸和y軸交于A、B兩點,將△AOB繞點O順時針旋轉90°后得到△A′OB′.

(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點C,求SABC:SABO的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,數(shù)軸上,O點與C點對應的數(shù)分別是0、60(單位:單位長度),將一根質(zhì)地均勻的直尺AB放在數(shù)軸上(AB的左邊),若將直尺在數(shù)軸上水平移動,當A點移動到B點的位置時,B點與C點重合,當B點移動到A點的位置時,A點與O點重合.

(1)直尺的長為多少個單位長度(直接寫答案)

(2)如圖2,直尺AB在數(shù)軸上移動,有BC=4OA,求此時A點對應的數(shù);

(3)如圖3,以OC為邊搭一個橫截面為長方形的不透明的篷子,將直尺放入篷內(nèi)的數(shù)軸上的某處(看不到直尺的任何部分,AB的左邊),將直尺AB沿數(shù)軸以5個單位/秒的速度分別向左、向右移動,直到完全看到直尺,所經(jīng)歷的時間為t1、t2, t1﹣t2=2(秒),求直尺放入蓬內(nèi),A點對應的數(shù)為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當AMN=60°時,結論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當AMN= °時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

同步練習冊答案