【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形并解答有關(guān)問題.

1)在第n個(gè)圖中,第一橫行共_________ 塊瓷磚,第一豎列共有_________ 塊瓷磚;(均用含n的代數(shù)式表示)

2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,請寫出y與(1)中的n的函數(shù)關(guān)系式;

3)按上述鋪設(shè)方案,鋪一塊這樣的矩形地面共用了506塊瓷磚,求此時(shí)n的值;

4)黑瓷磚每塊4元,白瓷磚每塊3元,問題(3)中,共花多少元購買瓷磚;

5)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請通過計(jì)算說明理由.

【答案】(1)(n+3),(n+2);(2y=n+3)(n+2);(320;(41604元;(5)不存在,理由參見解析.

【解析】試題分析:(1)觀察圖形,找出規(guī)律即可;(2)第1個(gè)圖形有4×3塊瓷磚,第2個(gè)圖形有5×4塊瓷磚,第3個(gè)圖形有6×5塊瓷磚,所以可以推出瓷磚的總塊數(shù)為y=n+3)(n+2);(3)當(dāng)y=506時(shí)可以代入(1)中函數(shù)關(guān)系式求出n;(4)和(1)一樣可以推出白瓷磚的總塊數(shù)為y'= nn+1),然后可以推出黑瓷磚數(shù)目,再根據(jù)已知條件即可計(jì)算出錢數(shù);(5)利用(4)的結(jié)論計(jì)算即可判斷是否存在.

試題解析:(1)觀察圖形得知:當(dāng)n=1時(shí),橫行為1+3=4塊,豎行有1+2=3塊,當(dāng)n=2時(shí),橫行為2+3=5塊,豎行有2+2=4塊,當(dāng)n=3時(shí),橫行為3+3=6塊,豎行有3+2=5塊,其規(guī)律是每橫行有(n+3)塊,每豎列有(n+2)塊.(2)當(dāng)n=1時(shí),y=1+3)(1+2=12,當(dāng)n=2時(shí),y=2+3)(2+2=20,當(dāng)n=3時(shí),y=3+3)(3+2=30,所以yn的函數(shù)關(guān)系式為:y=n+3)(n+2);(3)由題意,得(n+3)(n+2=506,整理得:n2+5n-500=0,解得:n=,即n1=20,n2=﹣25(舍去),所以n的值為20;(4)觀察圖形可知,每橫行有白磚(n+1)塊,每豎列有白磚n塊,因而白磚總數(shù)是nn+1)塊,n=20時(shí),白磚為20×21=420(塊),黑磚數(shù)為506﹣420=86(塊).故總錢數(shù)為420×3+86×4=1260+344=1604(元);(5)黑白磚總數(shù)為(n+2)(n+3=n2+5n+6,當(dāng)黑白磚塊數(shù)相等時(shí),有方程nn+1=n2+5n+6﹣nn+1).整理得n2﹣3n﹣6=0.解之得n1=,n2=.由于n1的值不是整數(shù),n2的值是負(fù)數(shù),故不存在黑白磚塊數(shù)相等的情形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,A、B兩地相距120千米,甲騎自行車以20千米/時(shí)的速度由起點(diǎn)A前往終點(diǎn)B,乙騎摩托車以40千米/時(shí)的速度由起點(diǎn)B前往終點(diǎn)A.兩人同時(shí)出發(fā),各自到達(dá)終點(diǎn)后停止.設(shè)兩人之間的距離為s(千米),甲行駛的時(shí)間為t(小時(shí)),則下圖中正確反映s與t之間函數(shù)關(guān)系的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)是(4,﹣1),點(diǎn)A與點(diǎn)B關(guān)于x軸對稱,則點(diǎn)A的坐標(biāo)是(  )

A. (4,1) B. (﹣1,4) C. (﹣4,﹣1) D. (﹣1,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形OABC置于平面直角坐標(biāo)系中,點(diǎn)P在邊OA上從O向A運(yùn)動(dòng),連接CP交對角線OB于點(diǎn)Q,連接AQ.
(1)求證:△OCQ≌△OAQ;
(2)當(dāng)點(diǎn)Q的坐標(biāo)為( , )時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P在邊OA上從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A后,再繼續(xù)在邊AB上從A運(yùn)動(dòng)到點(diǎn)B,在整個(gè)過運(yùn)動(dòng)過程中,若△OCQ恰為等腰三角形,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的周長為1,連接△ABC的三邊中點(diǎn)構(gòu)成第二個(gè)三角形,再連接第二個(gè)三角形的三邊中點(diǎn)構(gòu)成第三個(gè)三角形,依此類推,第2010個(gè)三角形的周長是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,4)向右平移9個(gè)單位得到點(diǎn)P1,再將點(diǎn)P1繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)P2,則點(diǎn)P2的坐標(biāo)是(  )

A. (4,﹣4) B. (4,4) C. (﹣4,﹣4) D. (﹣4,4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠BADACB90°,ABADAC4BC,設(shè)CD的長為x,四邊形ABCD的面積為y,求yx之間的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC是等邊三角形,D是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與B,C重合)△ADF是以AD為邊的等邊三角形,過點(diǎn)F作BC的平行線交射線AC于點(diǎn)E,連接BF.
(1)如圖1,求證:△AFB≌△ADC;
(2)請判斷圖1中四邊形BCEF的形狀,并說明理由;
(3)若D點(diǎn)在BC 邊的延長線上,如圖2,其它條件不變,請問(2)中結(jié)論還成立嗎?如果成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,AC交⊙O于點(diǎn)E,BAC=45度.給出以下五個(gè)結(jié)論:EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE2倍;⑤AE=BC.其中正確結(jié)論的序號是( 。

A. ①②③ B. ①②④ C. ①②⑤ D. ①②③⑤

查看答案和解析>>

同步練習(xí)冊答案