【題目】請認(rèn)真觀察圖形,解答下列問題:
(1)根據(jù)圖1中條件,試用兩種不同方法表示兩個陰影圖形的面積的和.
方法1: .
方法2: .
(2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來: .
(3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個正方形邊長分別為a、b,如果a+b=10,ab=21,求陰影部分的面積.
【答案】(1)方法1:a2+b2 ;方法2:(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)陰影部分的面積=18.5.
【解析】
(1)方法1:兩個正方形面積和,方法2:大正方形面積-兩個小長方形面積;
(2)由題意結(jié)合(1)的結(jié)果可直接得到;
(3)由陰影部分面積=正方形ABCD的面積+正方形CGFE的面積-三角形ABD的面積-三角形BGF的面積,可求陰影部分的面積.
(1)由題意可得:方法1:a2+b2 ,
方法2:(a+b)2﹣2ab;
(2)a2+b2=(a+b)2﹣2ab;
(3)∵陰影部分的面積=S正方形ABCD+S正方形CGFE﹣S△ABD﹣S△BGF
=a2+b2﹣a2﹣(a+b)b,
∴陰影部分的面積=a2+b2﹣ab= [(a+b)2﹣2ab]﹣ab=18.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,BD⊥AC于點D,AD=3.5cm,點P、Q分別為AB、AD上的兩個定點且BP=AQ=2cm,若在BD上有一動點E使PE+QE最短,則PE+QE的最小值為_____cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).
(1)求這個二次函數(shù)的表達式;
(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC.
①求線段PM的最大值;
②當(dāng)△PCM是以PM為一腰的等腰三角形時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具用品商店銷售A、B兩種款式文具盒,已知購進1個A款文具盒比B款文具盒便宜5元,且用300元購入A款文具盒的數(shù)量比購入B款文具盒的數(shù)量多5個.
(1)購進一個A款文具盒、一個B款文具盒各需多少元?
(2)若A款文具盒與B款文具盒的售價分別是20元和30元,現(xiàn)該文具用品商店計一劃用不超過1000元購入共計60個A、B兩種款式的文具盒,且全部售完,問如何安排進貨才能使銷售利潤最大?并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點是(-6,0),B點是(0,8),動點P從點B出發(fā),在BA邊上以每秒5個單位的速度向點A作勻速運動,同時動點Q從點O出發(fā),在OB邊上以每秒4個單位的速度向點B作勻速運動,設(shè)運動時間為t秒(0<t<2),連接PQ.
(1)如1圖,設(shè)△BPQ的面積為y,求y與t的函婁關(guān)系式;
(2)如2圖,連接AQ、OP,如果AQ⊥OP,求t的值;
(3)設(shè)PQ的中點為D點,則D點一定在直線________上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將紙片沿折疊,其中.
(1)如圖1,點落在邊上的點處,與是否平行?請說明理由;
(2)如圖2,點落在四邊形內(nèi)部的點處,探索與之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,以正方形的點為坐標(biāo)原點建立平面直角坐標(biāo)系,其中線段在軸上,線段在軸上,其中正方形的周長為24.
(1)直接寫出,兩點的坐標(biāo).
(2)若與軸重合的直線以每秒1個單位長度的速度由軸向右平移,移動至與所在的直線重合時停止.在移動過程中直線與、交點分別為點和點.問:運動多長時間時,長方形的周長與長方形的周長之比為5:4.
(3)在(2)的條件下,若直線上有一點,連接、,恰好滿足.求出的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP是∠ABC的平分線,AP⊥BP于P,連接PC,若△ABC的面積為1cm2則△PBC的面積為( ).
A. 0.4 cm2B. 0.5 cm2
C. 0.6 cm2D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com