【題目】如圖1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,點M從點D出發(fā),以每秒2個單位長度的速度向點A運動,同時,點N從點B出發(fā),以每秒1個單位長度的速度向點C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP⊥AD于點P,連接AC交NP于點Q,連接MQ.設運動時間為t秒.
(1)AM= ,AP= .(用含t的代數(shù)式表示)
(2)當四邊形ANCP為平行四邊形時,求t的值
(3)如圖2,將△AQM沿AD翻折,得△AKM,是否存在某時刻t,
①使四邊形AQMK為為菱形,若存在,求出t的值;若不存在,請說明理由
②使四邊形AQMK為正方形,則AC= .
【答案】(1)8﹣2t;2+t;(2)2;(3)①存在時刻t=1,使四邊形AQMK為菱形.理由詳見解析;②8.
【解析】試題分析:(1)由DM=2t,根據(jù)AM=AD-DM即可求出AM=6-2t;先證明四邊形CNPD為矩形,得出DP=CN=4-t,則AP=AD-DP=2+t;
(2)根據(jù)四邊形ANCP為平行四邊形時,可得4-t=6-(6=4-t),解方程即可;
(3))①由NP⊥AD,QP=PK,可得當PM=PA時有四邊形AQMK為菱形,列出方程4-t-2t=6-(4-t),求解即可,
②要使四邊形AQMK為正方形,由∠ADC=90°,可得∠CAD=45°,所以四邊形AQMK為正方形,則CD=AD,由AD=8,可得CD=6,利用勾股定理求得AC即可.
試題解析:(1)6﹣2t,2+t.
(2)∵四邊形ANCP為平行四邊形時,CN=AP,
∴4﹣t=t+2,解得t=1,
(3)①∵NP⊥AD,QP=PK,
∴當PM=PA時有四邊形AQMK為菱形,
∴4﹣t﹣2t=2+t,解得t=0.5,
∴存在時刻t=0.5,使四邊形AQMK為菱形.
②AC=6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=,點E為對角線AC上一動點,連接DE,過點E作EF⊥DE.交射線BC于點F,以DE、EF為鄰邊作矩形DEFG,連接CG.
①求證:矩形DEFG是正方形;
②探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結論:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④S△ODC=S四邊形BEOF中,正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暴雨過后,某地遭遇山體滑坡,武警總隊派出一隊武警戰(zhàn)士前往搶險.半小時后,第二隊前去支援,平均速度是第一隊的1.5倍,結果兩隊同時到達.已知搶險隊的出發(fā)地與災區(qū)的距離為90千米,兩隊所行路線相同.
(1)問兩隊的平均速度分別是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某三岔路口交通環(huán)島的簡化模型,在某高峰時刻,單位時間進出路口A,B,C的機動車輛數(shù)如圖所示.圖中x1,x2,x3分別表示該時段單位時間通過路段AB,BC,CA的機動車輛數(shù)(假設單位時間內在上述路段中同一路段上駛入與駛出的車輛數(shù)相等),則有( 。
A. x1>x2>x3 B. x1>x3>x2 C. x2>x3>x1 D. x3>x2>x1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某車間有120名工人,為了了解這些工人日加工零件數(shù)的情況,隨機抽出其中的30名工人進行調查.整理調查結果,繪制出不完整的條形統(tǒng)計圖(如圖).根據(jù)圖中的信息,解答下列問題:
(1)在被調查的工人中,日加工9個零件的人數(shù)為名;
(2)在被調查的工人中,日加工12個零件的人數(shù)為名,日加工個零件的人數(shù)最多,日加工15個零件的人數(shù)占被調查人數(shù)的%;
(3)依據(jù)本次調查結果,估計該車間日人均加工零件數(shù)和日加工零件的總數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有4個三角形,第②個圖案中有6個三角形,第③個圖案中有8個三角形,…,按此規(guī)律排列下去,則第⑦個圖案中三角形的個數(shù)為( )
A. 12 B. 14 C. 16 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗一家利用元旦三天駕車到某景點旅游.小汽車出發(fā)前油箱有油36L,行駛ah后,途中在加油站加油若干bL.油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示.根據(jù)圖象回答下列問題:
①小汽車行駛________h后加油, 中途加油__________L;
②求加油前油箱余油量Q與行駛時間t的函數(shù)關系式;
③如果加油站距景點200km,車速為80km/h,要到達目的
地,油箱中的油是否夠用?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com