【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
【答案】
(1)證明:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點(diǎn),
∴AE=DE,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD
(2)證明:四邊形AFBD是矩形.
理由:
∵AB=AC,D是BC的中點(diǎn),
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,即AF∥BC,
∴四邊形AFBD是平行四邊形,
又∵∠ADB=90°,
∴四邊形AFBD是矩形
【解析】(1)先由AF∥BC,利用平行線的性質(zhì)可證∠AFE=∠DCE,而E是AD中點(diǎn),那么AE=DE,∠AEF=∠DEC,利用AAS可證△AEF≌△DEC,那么有AF=DC,又AF=BD,從而有BD=CD;(2)四邊形AFBD是矩形.由于AF平行等于BD,易得四邊形AFBD是平行四邊形,又AB=AC,BD=CD,利用等腰三角形三線合一定理,可知AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某NBA職業(yè)籃球隊(duì)15名隊(duì)員的身高(厘米)依次是: 192、203、205、 188、211、208、207、198、199、 200、203、 205、 196、 212、 205, 這組身高數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是( )
A.205 203B.212 188C.208 203D.203 198
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分6分)
如圖,在平面直角坐標(biāo)系中,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請(qǐng)解答下列問(wèn)題:
⑴ 畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出B1的坐標(biāo).
⑵ 畫出△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C1,并求出點(diǎn)A1走過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形的一邊在軸的負(fù)半軸上,是坐標(biāo)原點(diǎn),,反比例函數(shù)的圖像經(jīng)過(guò)點(diǎn),與交于點(diǎn),若的面積為20,則的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(m+3,2)與點(diǎn)B(1,n﹣1)關(guān)于x軸對(duì)稱,則m,n的值為( )
A. m=﹣4,n=3 B. m=﹣2,n=﹣1
C. m=4,n=﹣3 D. m=2,n=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“紅色小講解員”演講比賽中,7位評(píng)委分別給出某位選手的原始評(píng)分.評(píng)定該選手成績(jī)時(shí),從7個(gè)原始評(píng)分中去掉一個(gè)最高分、一個(gè)最低分,得到5個(gè)有效評(píng)分.5個(gè)有效評(píng)分與7個(gè)原始評(píng)分相比,這兩組數(shù)據(jù)一定不變的是( ).
A.中位數(shù)B.眾數(shù)C.平均數(shù)D.方差
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com