【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對△ABC作變換[60°, ]得△AB′C′,則SAB′C′:SABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB′C′,使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

【答案】
(1)3:1;60
(2)

解:∵四邊形ABB′C′是矩形,

∴∠BAC′=90°.

∴θ=∠CAC′=∠BAC′﹣∠BAC=90﹣30=60°.

在 Rt△ABB′中,∠ABB'=90°,∠BAB′=60°,

∴∠AB′B=30°,

∴n= =2


(3)

解:∵四邊形ABB′C′是平行四邊形,

∴AC′∥BB′,

又∵∠BAC=36°,

∴θ=∠CAC′=∠AC′B′=72°.

∴∠BB′A=∠BAC=36°,而∠B=∠B,

∴△ABC∽△B′BA,

∴AB:BB′=CB:AB,

∴AB2=CBBB′=CB(BC+CB′),

而 CB′=AC=AB=B′C′,BC=1,

∴AB2=1(1+AB),

∴AB= ,

∵AB>0,

∴n= =


【解析】解:(1)根據(jù)題意得:△ABC∽△AB′C′,
∴SAB′C′:SABC=( 2=( 2=3,∠B=∠B′,
∵∠ANB=∠B′NM,
∴∠BMB′=∠BAB′=60°;
所以答案是:3:1,60;

【考點精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分,以及對矩形的性質(zhì)的理解,了解矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(﹣4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;
(2)當(dāng)點P在線段AB(不包括A,B兩點)上時.
①求證:∠BDE=∠ADP;
②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;
(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,Am°,ABC和∠ACD的平分線相交于點A1,得∠A1;A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)計劃購買A型和B型課桌凳共200套. 經(jīng)招標(biāo),購買一套A型課桌凳比購買一套B型課桌凳少用40元,且購買4套A型和5套B型課桌凳共需1820元.(1)求購買一套A型課桌凳和一套B型課桌凳各需多少元?

(2)、學(xué)校根據(jù)實際情況,要求購買這兩種課桌凳總費用不能超過40880元,并且購買A型課桌凳的數(shù)量不能超過B型課桌凳數(shù)量的,求該校本次購買A型和B型課桌凳共有幾種方案?哪種方案的總費用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.

(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當(dāng)m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線l于點H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時,過點P分別作x軸、直線l的垂線,垂足為點E,F(xiàn).是否存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小龍沿著一條筆直的馬路進(jìn)行長跑比賽,小明在比賽過程中始終領(lǐng)先小龍,并勻速跑完了全程,小龍勻速跑了幾分鐘后提速和小明保持速度一致,又過了1分鐘,小龍因體力問題,不得已又減速,并一直以這一速度完成了余下的比賽, 完成比賽所用時間比小明多了1分鐘,已知小明跑后4分20秒時領(lǐng)先小龍175米,小明與小龍之間的距離(米)與他們所用時間(分鐘)之間的函數(shù)關(guān)系如圖所示.有下列說法:①小明到達(dá)終點時,小龍距離終點還有225米;②小明的速度是300米/分;③小龍?zhí)崴偾暗乃俣仁?00米/分;④比賽全程為1 500米.其中正確的是( )

A. ①②③ B. ②③④

C. ①②④ D. ①③④

查看答案和解析>>

同步練習(xí)冊答案