【題目】如圖,O的半徑為17cm,弦ABCD,AB=30cm,CD=16cm,圓心O位于AB、CD的上方,求AB和CD間的距離.

【答案】解:分別作弦AB、CD的弦心距,設(shè)垂足為E、F,連接OA,OC。

AB=30,CD=16,AE=AB=15,CF=CD=8。

∵⊙O的半徑為17,即OA=OC=17。

在RtAOE中,。

在RtOCF中,。

EF=OF-OE=15-8=7。

答:AB和CD的距離為7cm

解析垂徑定理,;勾股定理。

分別作弦AB、CD的弦心距,設(shè)垂足為E、F;由于ABCD,則E、O、F三點(diǎn)共線,EF即為AB、CD間的距離;由垂徑定理,易求得AE、CF的長(zhǎng),可連接OA、ODC在構(gòu)建的直角三角形中,根據(jù)勾股定理即可求出OE、OF的長(zhǎng),也就求出了EF的長(zhǎng),即弦AB、CD間的距離。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BGAF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )

A. 40° B. 45° C. 55° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長(zhǎng)度;

(2)設(shè)直線BCy軸交于點(diǎn)M,點(diǎn)CBM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下面三行數(shù):

1)第①行數(shù)按什么規(guī)律排列?

2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系;

3)設(shè)分別為第①②③行的2012個(gè)數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分于點(diǎn).

(1)BC=7,BD=4,則點(diǎn)的距離是________;

(2),點(diǎn)的距離是8,則的長(zhǎng)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC

(1)圖2中的全等三角形是_______________,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

2)指出線段DC和線段BE的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,ABBC,DAC上一點(diǎn),AEBD,交BD的延長(zhǎng)線于E,CFBDF.

(1)求證:CFBE

(2)BD=2AE,求證:∠EADABE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:

頻數(shù)分布表

身高分組

頻數(shù)

百分比

x155

5

10%

155≤x160

a

20%

160≤x165

15

30%

165≤x170

14

b

x≥170

6

12%

總計(jì)

100%

(1)填空:a=____,b=____;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一圓形零件的標(biāo)準(zhǔn)直徑是,超過(guò)規(guī)定直徑長(zhǎng)度的數(shù)量(毫米)記作正數(shù),不足規(guī)定直徑長(zhǎng)度的數(shù)量(毫米)記作負(fù)數(shù),檢驗(yàn)員某次抽查了零件樣品,檢查的結(jié)果如下:

序號(hào)

直徑長(zhǎng)度/

1)試指出哪件樣品的大小最符合要求?

2)如果規(guī)定誤差的絕對(duì)值在之內(nèi)是正品.誤差的絕對(duì)值在之間是次品,誤差的絕對(duì)值超過(guò)的是廢品,那么上述五件樣品中,哪些是正品,哪些是次品,哪些是廢品?

查看答案和解析>>

同步練習(xí)冊(cè)答案