如圖,已知在矩形ABCD中,AB=2,BC=4,四邊形AFCE為菱形,求菱形的面積.

解:∵四邊形AFCE為菱形,
∴AF=CF=EC=AE,
∵四邊形ABCD是矩形,
∴∠B=90°,
設AE=x,則BE=BC-EC=4-x,
∵在Rt△ABE中,AB2+BE2=AE2,
即:22+(4-x)2=x2,
∴x=
∴S菱形AFCE=EC•AB=×2=5.
∴菱形的面積為5.
分析:首先由菱形的四條邊都相等與矩形的四個角是直角,即可得到直角三角形ABE中三邊的關系,借助于方程即可求得菱形的邊長,則可求得其面積.
點評:此題考查了菱形與矩形的性質,以及直角三角形中的勾股定理.解此題的關鍵是注意數(shù)形結合思想與方程思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)自選題:
如圖,已知在矩形ABCD中,AB=2,BC=3,P是線段AD邊上的任意一點(不含端點A、D),連接PC,過點P作PE⊥PC交AB于E.
(1)在線段AD上是否存在不同于P的點Q,使得QC⊥QE?若存在,求線段AP與AQ之間的數(shù)量關系;若不存在,請說明理由;
(2)當點P在AD上運動時,對應的點E也隨之在AB上運動,求BE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在矩形ABCD中,AB=3,點E在BC上且∠BAE=30°,延長BC到點F使CF=BE,連接DF.
(1)判斷四邊形AEFD的形狀,并說明理由;
(2)求DF的長度;
(3)若四邊形AEFD是菱形,求菱形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在矩形ABCD中,AB=2,BC=4,四邊形AFCE為菱形,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在矩形ABCD中,AB=6,BC=8,⊙E和⊙F分別是△ABC和△ADC的內切圓,與對角線AC分別切于E、F,則EF=
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在矩形ABCD中,E是AD上的一點,F(xiàn)是AB上的一點,EF⊥EC,且EF=EC,D精英家教網(wǎng)E=3cm,BC=7cm.
(1)求證:△AEF≌△DCE;
(2)請你求出EF的長.

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欑粈鍐┿亜閺囧棗娲ら悡姗€鏌熸潏楣冩闁稿鍔欓弻娑樷枎韫囷絾效闂佽鍠楅悷褏妲愰幘瀛樺闁告繂瀚烽埀顒€鐭傞弻娑㈠Ω閵壯冪厽閻庢鍠栭…閿嬩繆閹间礁鐓涢柛灞剧煯缁ㄤ粙姊绘担鍛靛綊寮甸鍌滅煓闁硅揪瀵岄弫鍌炴煥閻曞倹瀚�