【題目】如圖,在△ABC中,∠=90°,=6,點在邊上運動,過點于點,以、為鄰邊作設(shè)與△重疊部分圖形的面積為,線段的長為(0<≤6).

(1)求線段的長(用含的代數(shù)式表示)

(2)當點落現(xiàn)在變上時,求的值;

(3)求之間的函數(shù)關(guān)系式;

(4)直接寫出點到△任意兩邊所在直線的距離相等時的值.

【答案】(1)x;(2)x=4;(3);(4)3,6, .

【解析】試題分析:(1)利用平行四邊形和三角函數(shù)值,可求出PE.(2)利用三角函數(shù)把AP,PCx表示出來,求值.(3)AP的長度分類討論,可求得兩個二次函數(shù)解析式.(4)E到各邊的距離,直接寫出結(jié)果.

試題解析:

(1)∠C=90°,AB=AC,∴∠A=45°,

PDAB,AD=APcosA=x=PD,

∵四邊形PADE是平行四邊形,

PE=AD=x.

2E點落在BC上,圖1,PEAD,∴∠CPE=45°,

PC=PEcosCPE=x=,

所以AP+PC=AC,

所以x+=6, x=4.

(3)0<xy=AD.2,

4<x6,設(shè)DE BC交于G,PEBC交于F,3

AD=x,AB=AC=6,

DB=ABAD=6-x,

DG=DBsinB=6-,

GE=DE-DG=,

y=S四邊形PADE-SGFE=2

= .

(4)3,6, .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵大學畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10,出廠價為每件12,每月銷售量y(件)與銷售單價x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20,那么政府這個月為他承擔的總差價為多少元?

2設(shè)李明獲得的利潤為W(元),當銷售單價定為多少元時,每月可獲得最大利潤?

3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:AOB和兩點C、D,求作一點P,使PC=PD,且點P到AOB的兩邊的距離相等.

(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,A=30°,AC=2

(1)利用尺規(guī)作線段AC的垂直平分線DE,垂足為E,交AB于點D;(保留作圖痕跡,不寫作法)

(2)若ADE的周長為a,先化簡T=(a+1)2﹣a(a﹣1),再求T的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-20,B點對應(yīng)的數(shù)為100.

請寫出AB中點M對應(yīng)的數(shù)。

(2)現(xiàn)有一只電子螞蟻P從B點出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動。設(shè)兩只電子螞蟻在數(shù)軸上的C點相遇,你知道C點對應(yīng)的數(shù)是多少嗎?

(3)若當電子螞蟻P從B點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動。設(shè)兩只電子螞蟻在數(shù)軸上的D點相遇,你知道D點對應(yīng)的數(shù)是多少嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有4張正面分別標有數(shù)字﹣1,2,﹣3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從4張卡片中隨機摸出一張不放回,將該卡片上的數(shù)字記為m,在隨機抽取1張,將卡片的數(shù)字即為n

(1)請用列表或樹狀圖的方式把(m,n)所有的結(jié)果表示出來.

(2)求選出的(m,n)在二、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .

(1)求證:AB為⊙C的切線;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一列數(shù):1,―2,3,―4,5,―67,將這列數(shù)排成下列形式:

11

2行 -2  3

3行 -4  5  -6

47  -8   9  -10

511 12  13  -14  15

… …

按照上述規(guī)律排下去,那么第10行從左邊數(shù)第5個數(shù)等于

A.50B.50C.60D.60

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.

(1)當∠BQD=30°時,求AP的長;

(2)證明:在運動過程中,點D是線段PQ的中點;

(3)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

同步練習冊答案