如圖,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1,則線段OA1的長與∠AOB1的度數(shù)分別為


  1. A.
    6,90°
  2. B.
    6,45°
  3. C.
    6,135°
  4. D.
    6,150°
C
分析:△OAB是等腰直角三角形,△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1,則△OAB≌△OA1B1,根據(jù)全等三角形的性質(zhì)即可求解.
解答:∵,△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1
∴△OAB≌△OA1B1,
∴OA1=OA=6;
∵△OAB是等腰直角三角形,
∴∠A1OB=45°
∴∠AOB1=∠BOB1+∠BOA=90+45=135°.
故選:C.
點(diǎn)評:本題主要考查了旋轉(zhuǎn)的性質(zhì),圖形旋轉(zhuǎn)前后的兩個(gè)圖形全等,正確確定旋轉(zhuǎn)角是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•峨眉山市二模)如圖,在Rt△ABO中,OB=8,tan∠OBA=
34
.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C在x軸負(fù)半軸上,且OB=4OC.若拋物線y=ax2+bx+c經(jīng)過點(diǎn)A、B、C.
(1)求該拋物線的解析式;
(2)設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,求四邊形OAPB的面積;
(3)有兩動點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)M以每秒2個(gè)單位長度的速度沿折線OAB按O→A→B的路線運(yùn)動,點(diǎn)N以每秒4個(gè)單位長度的速度沿折線按O→B→A的路線運(yùn)動,當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動.設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S.
①請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
②判斷在①的過程中,t為何值時(shí),△OMN的面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•杭州)如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABO中,直角邊AO=BO=5.若點(diǎn)A到OC的距離為3,則點(diǎn)B到OC的距離為
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABO中,∠OAB=90°,∠B=45°,OA=6,將△OAB繞點(diǎn)O沿逆時(shí)針方向旋轉(zhuǎn)90°得到△OA1B1,則線段OA1的長與∠AOB1的度數(shù)分別為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABO中,OB=8,tan∠OBA=.若以O(shè)為坐標(biāo)原點(diǎn),OA所在直線為軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)C在軸負(fù)半軸上,且OB=4OC.若拋物線經(jīng)過點(diǎn)A、B、C .

1.求該拋物線的解析式

2.設(shè)該二次函數(shù)的圖象的頂點(diǎn)為P,求四邊形OAPB的面積

3.有兩動點(diǎn)M,N同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)M以每秒2個(gè)單位長度的速度沿折線OAB按O→A→B的路線運(yùn)動,點(diǎn)N以每秒4個(gè)單位長度的速度沿折線按O→B→A的路線運(yùn)動,當(dāng)M、N兩點(diǎn)相遇時(shí),它們都停止運(yùn)動.設(shè)M、N同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OMN的面積為S .

①請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

②判斷在①的過程中,t為何值時(shí),△OMN 的面積最大?

 

查看答案和解析>>

同步練習(xí)冊答案