【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.

(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長為20,求△ABC的周長.

【答案】
(1)解:∵在△ABC中,AB=AC,∠A=40°,

∴∠ABC=∠C=70°,

∵AB的垂直平分線MN交AC于點D,

∴AD=BD,

∴∠ABD=∠A=40°,

∴∠DBC=∠ABC﹣∠ABD=30°


(2)解:∵MN垂直平分AB,

∴DA=DB,

∵BC+BD+DC=20,

∴AD+DC+BC=20,

∴AC+BC=20,

∵AB=2AE=12,

∴△ABC的周長=AB+AC+BC=12+20=32.


【解析】(1)由在△ABC中,AB=AC,∠A=42°,利用等腰三角形的性質(zhì),即可求得∠ABC的度數(shù),然后由AB的垂直平分線MN交AC于點D,根據(jù)線段垂直平分線的性質(zhì),可求得AD=BD,繼而求得∠ABD的度數(shù),則可求得∠DBC的度數(shù).(2)由△CBD的周長為20,推出AC+BC=20,根據(jù)AB=2AE=12,由此即可解決問題.
【考點精析】本題主要考查了線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)的相關(guān)知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠1=4°18′,∠2=4.4°,則∠1__________∠2.(填“大于、小于或等于)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上點AB、C的位置如圖所示,AB對應(yīng)的數(shù)分別為51,已知線段AB的中點D與線段BC的中點E之間的距離為5

1)求點D對應(yīng)的數(shù);

2)求點C對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S=1+2)(1+22)(1+24)(1+28)(1+216),則S+1=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“4000輛自行車、187個服務(wù)網(wǎng)點”,臺州市區(qū)現(xiàn)已實現(xiàn)公共自行車服務(wù)全覆蓋,為人們的生活帶來了方便.圖①是公共自行車的實物圖,圖②是公共自行車的車架示意圖,點A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;

(2)求點E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:2x34x2+2x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2+2xm0的一個根是x1,則m的值是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中有穩(wěn)定性的是( )
A.正方形
B.長方形
C.直角三角形
D.平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次中學(xué)生田徑運動會上,根據(jù)參加男子跳高初賽的運動員的成績(單位:m),繪制出如下兩幅統(tǒng)計圖.請根據(jù)相關(guān)信息,解答下列問題:

(1)扇形統(tǒng)計圖中,初賽成績?yōu)?.65m所在扇形圖形的圓心角為_ _°;

(2)補全條形統(tǒng)計圖;

(3)這組初賽成績的中位數(shù)是 m;

(4)根據(jù)這組初賽成績確定8人進入復(fù)賽,那么初賽成績?yōu)?.60m的運動員楊強能否進入復(fù)賽?為什么?

查看答案和解析>>

同步練習(xí)冊答案