【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙OE,交AB于點(diǎn)D,連接AE,∠E30°,AC5

1)求CE的長(zhǎng);

2)求SADCSACE的比值.

【答案】(1);(2)3

【解析】

1)先根據(jù)圓周角定理得出∠ACB=90°,由∠ABC=30°可得出AB的長(zhǎng),再由CE平分∠ACB得出∠BCE=BAE=45°,故可得出△ABE是等腰直角三角形,由勾股定理可得出AE的長(zhǎng);過點(diǎn)AAFCE于點(diǎn)FACF為等腰直角三角形,由勾股定理得,AF和CF的長(zhǎng),再由勾股定理逆定理得EF的長(zhǎng),最后計(jì)算CE=CF+EF的長(zhǎng)即可;(2)過點(diǎn)CCMAB于點(diǎn)M,連接OE,利用等底三角形的面積比等于高之比,得出=,再通過比值計(jì)算即可得的比值.

解:

1)∵AB是⊙O的直徑,

∴∠ACB=∠AEB90°,

又∠E30°,

∴∠ABC30°,

AC5

AB10,BC,

CE平分∠ACB,

∴∠ACE=∠BCE45°AEBE.

如圖,過點(diǎn)AAFCE于點(diǎn)F

則△ACF為等腰直角三角形,

2CF225,

AFCF,

EF

CECF+EF,

CE的長(zhǎng)為.

2)過CCMAB于點(diǎn)M,連接OE

AEBE,OAB中點(diǎn),

OEAB,

SADCSADECMOECM5,

ACBCABCM

CM,

SADCSADE,

SADCSACE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為  ▲  (用a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似但不全等,我們就把這條對(duì)角線叫做這個(gè)四邊形的相似對(duì)角線”.

1)如圖1,在四邊形中,,,,對(duì)角線平分.求證:是四邊形相似對(duì)角線;

2)如圖2,已知格點(diǎn),請(qǐng)你在正方形網(wǎng)格中畫出所有的格點(diǎn)四邊形,使四邊形是以相似對(duì)角線的四邊形;(注:頂點(diǎn)在小正方形頂點(diǎn)處的多邊形稱為格點(diǎn)多邊形)

3)如圖3,四邊形中,點(diǎn)在射線上,點(diǎn)軸正半軸上,對(duì)角線平分,連接.是四邊形相似對(duì)角線,,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】建造一個(gè)面積為130m2的長(zhǎng)方形養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠墻,墻長(zhǎng)為a米,另三邊用竹籬笆圍成,如果籬笆總長(zhǎng)為33米.

1)求養(yǎng)雞場(chǎng)的長(zhǎng)與寬各為多少米?

2)若10a18,題中的解的情況如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知頂點(diǎn)為的拋物線經(jīng)過點(diǎn).

1)求拋物線的解析式;

2)設(shè),分別是軸、軸上的兩個(gè)動(dòng)點(diǎn).

①當(dāng)四邊形的周長(zhǎng)最小時(shí),在圖1中作直線,保留作圖痕跡.并直接寫出直線的解析式;

②點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),的中點(diǎn),以為斜邊按圖2所示構(gòu)造等腰.在①的條件下,記的公共部分的面積為.求關(guān)于的函數(shù)關(guān)系式,并求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,弦CDABEACD=30°,AE=2cm.求DB長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,點(diǎn)C0,2),D3,4),在x軸正半軸上有一點(diǎn)A,且它到原點(diǎn)的距離為1

1)求過點(diǎn)C、A、D的拋物線的解析式;

2)設(shè)(1)中拋物線與x軸的另一個(gè)交點(diǎn)為B,求四邊形CABD的面積;

3)把(1)中的拋物線先向左平移一個(gè)單位,再向上或向下平移多少個(gè)單位能使拋物線與直線AD只有一個(gè)交點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線

(1)求拋物線的對(duì)稱軸;

(2)當(dāng)時(shí),設(shè)拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為,若為等邊三角形,求的值;

(3)(其中)且垂直軸的直線與拋物線交于兩點(diǎn).若對(duì)于滿足條件的任意值,線段的長(zhǎng)都不小于1,結(jié)合函數(shù)圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EAD邊上一點(diǎn),AEED12,連接AC、BE交于點(diǎn)F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案