【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點D為AB的中點.
(1)如果點P在線段BC上以1cm/s的速度由點B向點C運動,同時,點Q在線段CA上由點C向點A運動.
①若點Q的運動速度與點P的運動速度相等,經過1秒后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經過 后,點P與點Q第一次在△ABC的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
【答案】(1)見解析;(2)經過24秒點P與點Q第一次在邊AC上相遇.
【解析】
試題分析:(1)①根據(jù)時間和速度分別求得兩個三角形中BP、CQ和BD、PC邊的長,根據(jù)SAS判定兩個三角形全等.
②根據(jù)全等三角形應滿足的條件探求邊之間的關系,再根據(jù)路程=速度×時間公式,先求得點P運動的時間,再求得點Q的運動速度;
(2)根據(jù)題意結合圖形分析發(fā)現(xiàn):由于點Q的速度快,且在點P的前邊,所以要想第一次相遇,則應該比點P多走等腰三角形的兩個邊長.
解:(1)①全等,理由如下:
∵t=1秒,
∴BP=CQ=1×1=1厘米,
∵AB=6cm,點D為AB的中點,
∴BD=3cm.
又∵PC=BC﹣BP,BC=4cm,
∴PC=4﹣1=3cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
∴△BPD≌△CQP;
②假設△BPD≌△CQP,
∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CQP,∠B=∠C,則BP=CP=2,BD=CQ=3,
∴點P,點Q運動的時間t==2秒,
∴vQ===1.5cm/s;
(2)設經過x秒后點P與點Q第一次相遇,
由題意,得 1.5x=x+2×6,
解得x=24,
∴點P共運動了24s×1cm/s=24cm.
∵24=2×12,
∴點P、點Q在AC邊上相遇,
∴經過24秒點P與點Q第一次在邊AC上相遇.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級近期實行小班教學,若每間教室安排20名學生,則缺少3間教室;若每間教室安排24名學生,則空出一間教室.問這所學校共有教室多少間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xoy中,已知點P是反比例函數(shù)圖象上一個動點,以P為圓心的圓始終與y軸相切,設切點為A.
(1)如圖1,⊙P運動到與x軸相切,設切點為K,試判斷四邊形OKPA的形狀,并說明理由.
(2)如圖2,⊙P運動到與x軸相交,設交點為B,C.當四邊形ABCP是菱形時:
①求出點A,B,C的坐標.
②在P點右側的反比例函數(shù)圖像是否存在上點M,使△MBP的面積等于菱形ABCP面積.若存在,試求出滿足條件的M點的坐標,若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三只乒乓球上,分別寫有三個不同的正整數(shù)(用a、b、c表示),三只乒乓球除標的數(shù)字不同外,其余都相同,將三只乒乓球放在一個不透明的盒中攪拌均勻,無放回的從中依次摸出2只乒乓球,將球上面的數(shù)字相加求和.當和為偶數(shù)時,記為事件A,當和為奇數(shù)時,記為事件B.
(1)設計一組a、b、c的值,使得事件A為必然發(fā)生的事件.
(2)設計一組a、b、c的值,使得事件B發(fā)生的概率大于事件A發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把-6-(+7)+(-2)-(-9)寫成省略加號和的形式后的式子是( )
A. -6-7+2-9 B. -6-7-2+9 C. -6+7-2-9 D. -6+7-2+9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操場上有一根豎直立在地面上的旗桿,繩子自然下垂到地面還剩余2米,當把繩子拉開8米后,繩子剛好斜著拉直下端接觸地面(如圖①)
(1)請根據(jù)你的閱讀理解,將題目的條件補充完整:如圖②,Rt△ABC中 ∠C=90°,BC=8米,____________________________.求AC的長.
(2)根據(jù)(1)中的條件,求出旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假將至,某商場為了吸引顧客,設計了可以自由轉動的轉盤(如圖所示,轉盤被均勻地分為20份),并規(guī)定:顧客每 200元的商品,就能獲得一次轉動轉盤的機會.如果轉盤停止后,指針正好對準紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得200元、100元、50元的購物券,憑購物券可以在該商場繼續(xù)購物.若某顧客購物300元.
(1)求他此時獲得購物券的概率是多少?
(2)他獲得哪種購物券的概率最大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com