【題目】某市2018年平均每天的垃圾處理量為40萬(wàn)噸/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100萬(wàn)噸;2019年平均每天的垃圾處理量是2018年平均每天的垃圾處理量的2. 5. 2019年平均每天的垃圾處理率是2018年平均每天的垃圾處理率的1. 25.

(注:

1)求該市2018年平均每天的垃圾排放量;

2)預(yù)計(jì)該市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加. 如果按照創(chuàng)衛(wèi)要求城市平均每天的垃圾處理率不低于,那么該市2020年平均每天的垃圾處理量在2019年平均每天的垃圾處理量的基礎(chǔ)上,至少還需要増加多少萬(wàn)噸才能使該市2020年平均每天的垃圾處理率符合創(chuàng)衛(wèi)的要求?

【答案】1100;(298.

【解析】

1)設(shè)2018年平均每天的垃圾排放量為x萬(wàn)噸,根據(jù)題意列方程求出x的值即可;

2)設(shè)設(shè)2020年垃圾的排放量還需要増加m萬(wàn)噸,根據(jù)題意列出不等式,解得m的取值范圍即可得到答案.

1)設(shè)2018年平均每天的垃圾排放量為x萬(wàn)噸,

,

解得:x=100

經(jīng)檢驗(yàn),x=100是原分式方程的解,

答:2018年平均每天的垃圾排放量為100萬(wàn)噸.

2)由(1)得2019年垃圾的排放量為200萬(wàn)噸,

設(shè)2020年垃圾的排放量還需要増加m萬(wàn)噸,

90%,

m98,

∴至少還需要増加98萬(wàn)噸才能使該市2020年平均每天的垃圾處理率符合創(chuàng)衛(wèi)的要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:已知平行四邊形的面積為,所在直線上一點(diǎn).

如圖:當(dāng)點(diǎn)重合時(shí),________;

如圖,當(dāng)點(diǎn)均不重合時(shí),________;

如圖,當(dāng)點(diǎn)(或)的延長(zhǎng)線時(shí),________.

拓展推廣:如圖,平行四邊形的面積為,分別為、延長(zhǎng)線上兩點(diǎn),連接、,求出圖中陰影部分的面積,并說明理由.

實(shí)踐應(yīng)用:如圖是一平行四邊形綠地,分別平行于,它們相交于點(diǎn),,,,,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域(連接、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解男生的體能情況,規(guī)定參加測(cè)試的每名男生從實(shí)心球,立定跳遠(yuǎn),引體向上耐久跑1000四個(gè)項(xiàng)目中隨機(jī)抽取一項(xiàng)作為測(cè)試項(xiàng)目.

1)八年(1)班的25名男生積極參加,參加各項(xiàng)測(cè)試項(xiàng)目的統(tǒng)計(jì)結(jié)果如圖,參加實(shí)心球測(cè)試的男生人數(shù)是   人;

2)八年(1)班有8名男生參加了立定跳遠(yuǎn)的測(cè)試,他們的成績(jī)(單位:分)如下:95,100,8290,89,9090,85

“95100,82,90,89,9090,85”這組數(shù)據(jù)的眾數(shù)是   ,中位數(shù)是   

②小聰同學(xué)的成績(jī)是92分,他的成績(jī)?nèi)绾危?/span>

③如果將不低于90分的成績(jī)?cè)u(píng)為優(yōu)秀,請(qǐng)你估計(jì)八年級(jí)80名男生中立定跳遠(yuǎn)成績(jī)?yōu)閮?yōu)秀的學(xué)生約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OMOC都在直線AB的上方.

1)將圖1中的三角板繞點(diǎn)O以每秒的速度沿逆時(shí)針方向旋轉(zhuǎn)一周如圖2,經(jīng)過t秒后,ON落在OC邊上,則______(直接寫結(jié)果)

2)如圖2,三角板繼續(xù)繞點(diǎn)O以每秒的速度沿逆時(shí)針方向旋轉(zhuǎn)到起點(diǎn)OA上同時(shí)射線OC也繞O點(diǎn)以每秒的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,

①當(dāng)OC轉(zhuǎn)動(dòng)9秒時(shí),求的度數(shù).

②運(yùn)動(dòng)多少秒時(shí),?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=3,PB=4,PC=5,將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°到△CBQ位置.連接PQ,則以下結(jié)論錯(cuò)誤的是( 。

A. ∠QPB=60° B. ∠PQC=90° C. ∠APB=150° D. ∠APC=135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了落實(shí)國(guó)務(wù)院副總理李克強(qiáng)同志到恩施考察時(shí)的指示精神,最近,州委州政府又出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:w=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤(rùn)為y(元).

(1)求y與x之間的函數(shù)關(guān)系式.

(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不得高于28元/千克,該農(nóng)戶想要每天獲得150元的銷售利潤(rùn),銷售價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形ABCD可以按圖示方式分成九部分,在ab變化的過程中,下面說法正確的有(

圖中存在三部分的周長(zhǎng)之和恰好等于長(zhǎng)方形ABCD的周長(zhǎng)

長(zhǎng)方形ABCD的長(zhǎng)寬之比可能為2

當(dāng)長(zhǎng)方形ABCD為正方形時(shí),九部分都為正方形

當(dāng)長(zhǎng)方形ABCD的周長(zhǎng)為60時(shí),它的面積可能為100

A.①②B.①③C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在中,平分,,則___________. (用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在直線跑道上從同向勻速跑步,間相距800米,已知甲先出發(fā),乙先到終點(diǎn)后原地休息了3秒,由于乙體力消耗較大,于是以原來速度的倍勻速返回,直到甲乙兩人第二次相遇時(shí)兩人同時(shí)停止運(yùn)動(dòng)。在跑步過程中,甲、乙兩人之間的距離(米)與乙出發(fā)的時(shí)間(秒)之間的關(guān)系如圖所示,則甲、乙兩次相遇點(diǎn)之間的距離為____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案