【題目】(1)根據(jù)要求,解答下列問題.
①方程的解為________________;
②方程的解為________________;
③方程的解為________________;
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程的解為________________;
②關(guān)于的方程________________的解為,.
(3)請(qǐng)用配方法解方程,以驗(yàn)證猜想結(jié)論的正確性.
【答案】(1)①x1=x2=1,;②x1=1,x2=2;③x1=1,x2=3;(2)①x1=1,x2=8;②x2-(1+n)x+n=0;(3)見解析;
【解析】
(1)利用因式分解法解各方程即可;
(2)根據(jù)以上方程特征及其解的特征,可判定方程x2-9x+8=0的解為1和8;②關(guān)于x的方程的解為x1=1,x2=n,則此一元二次方程的二次項(xiàng)系數(shù)為1,則一次項(xiàng)系數(shù)為1和n的和的相反數(shù),常數(shù)項(xiàng)為1和n的積.
(3)利用配方法解方程x2-9x+8=0可判斷猜想結(jié)論的正確.
(1)①(x-1)2=0,解得x1=x2=1,即方程x2-2x+1=0的解為x1=x2=1,;
②(x-1)(x-2)=0,解得x1=1,x2=2,所以方程x2-3x+2=0的解為x1=1,x2=2,;
③(x-1)(x-3)=0,解得x1=1,x2=3,方程x2-4x+3=0的解為x1=1,x2=3;
…
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程x2-9x+8=0的解為x1=1,x2=8;
②關(guān)于x的方程x2-(1+n)x+n=0的解為x1=1,x2=n.
(3)x2-9x=-8,
x2-9x+=-8+,
(x-)2=
x-=±,
所以x1=1,x2=8;
所以猜想正確.
故答案為x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2-(1+n)x+n=0;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(2,m),點(diǎn)B的坐標(biāo)為(n,﹣2),tan∠BOC= .
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點(diǎn),且△PAC的面積與△BOC的面積相等,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(huì)(以下簡稱“世園會(huì)”)于4月29日至10月7日在北京延慶區(qū)舉行世園會(huì)為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會(huì)”、.“愛我家,愛園藝”、C.“園藝小清新之旅”和D.“快速車覽之旅”李欣和張帆都計(jì)劃暑假去世園會(huì),他們各自在這4條線路中任意選擇條線路游覽,每條線路被選擇的可能性相同.李欣和張帆恰好選擇同線路游覽的概率為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點(diǎn).
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1⊥l2,則k1k2=﹣1.
解決問題:
①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;
②拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)M是拋物線上一動(dòng)點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化用品商店用2000元購進(jìn)一批學(xué)生書包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購進(jìn)第二批同樣的書包,所購數(shù)量是第一批購進(jìn)數(shù)量的3倍,但單價(jià)貴了4元,結(jié)果第二批用了6300元。
(1)求第一批購進(jìn)書包的單價(jià)是多少元?
(2)若商店銷售這兩批書包時(shí),每個(gè)售價(jià)都是120元,全部售出后,商店共盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫出△ABC向左平移5個(gè)單位長度后得到的△ABC;
(2) 請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),四邊形是菱形,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上,直線交軸于點(diǎn),邊交軸于點(diǎn),連接
(1)菱形的邊長是________;
(2)求直線的解析式;
(3)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿折線以2個(gè)單位長度/秒的速度向終點(diǎn)勻速運(yùn)動(dòng),設(shè)的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABCD中,∠BAD與∠ADC的角平分線交于BC邊的點(diǎn)F,∠ABC與∠BCD的角平分線交于AD邊的點(diǎn)H.
(1)求證:四邊形EFGH為矩形.
(2)若HF=3,求BC的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com