如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點(diǎn)E.
(1)求證:△OAD≌△EAB;
(2)求過點(diǎn)O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,其關(guān)于直線BF的對(duì)稱點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線BF上的一動(dòng)點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).
【答案】分析:(1)證明IF⊥OD,進(jìn)而得到∠FED=∠EBA;又因?yàn)镈A=BA,且∠OAD=∠EAB=90°,故可證明△OAD≌△EAB;
(2)首先求出點(diǎn)B、E的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;
(3)由于直線BD與x軸關(guān)于直線BF對(duì)稱,則拋物線與直線BD的交點(diǎn)即為所求之點(diǎn)P.分別求出拋物線與直線BD的解析式,聯(lián)立解方程,即可求出交點(diǎn)(點(diǎn)P)的坐標(biāo);
(4)首先證明△OED是頂角為135°的等腰三角形,若△BMD與△OED相似,則△BMD必須是等腰三角形.如答圖2所示,在直線BF上能使△BMD為等腰三角形的點(diǎn)M有4個(gè),分別記為M1,M2,M3,M4,其中符合題意的是點(diǎn)M1,M3
解答:(1)證明:如答圖1所示,連接ID,IO,

∵I為△BOD的外心,∴IO=ID,
又F為OD的中點(diǎn),∴IF⊥OD.
∴∠DEF+∠FDE=∠AEB+∠ABE=90°,又∠DEF=∠AEB,
∴∠FED=∠EBA.而DA=BA,且∠OAD=∠EAB=90°,
∴△OAD≌△EAB.

(2)解:由(1)知IF⊥OD,又BF為中線,
∴BO=BD=AB=2,
∴OA=BO-AB=2-
由(1)知△OAD≌△EAB,∴AE=OA=2-
∴E(2-,2-),B(2,0).
設(shè)過點(diǎn)O、B、E的拋物線解析式為y=ax2+bx,
則有,
解得,
∴拋物線的解析式為:y=x2+x.

(3)解:∵直線BD與x軸關(guān)于直線BF對(duì)稱,
∴拋物線與直線BD的交點(diǎn),即為所求之點(diǎn)P.
由(2)可知,B(2,0),D(2-,),可得直線BD的解析式為y=-x+2.
∵點(diǎn)P既在直線y=-x+2上,也在拋物線y=x2+x上,
∴-x+2=x2+x,解此方程得:x=2或x=,
當(dāng)x=2時(shí),y=-x+2=0;當(dāng)x=時(shí),y=-x+2=2-
∴點(diǎn)P的坐標(biāo)為(2,0)(與點(diǎn)B重合),或(,2-).

(4)解:∵DBO=45°,BD=BO,BF⊥OD,
∴∠EBA=22.5°,由(1)知∠ODA=22.5°,故∠DOA=67.5°,OA=EA,
∴∠EOA=45°,∠DOE=22.5°,即△OED是頂角為135°的等腰三角形.
若△BMD與△OED相似,則△BMD必須是等腰三角形.
如答圖2所示,在直線BF上能使△BMD為等腰三角形的點(diǎn)M有4個(gè),分別記為M1,M2,M3,M4,其中符合題意的是點(diǎn)M1,M3

∵DM1=DB=2,OA=2-,∴M1(-,).
由(1)知B(2,0),E(2-,2-),故直線BE的解析式為y=(1-)x-2+2
I是△BOD的外心,它是OB的垂直平分線x=1與OD的垂直平分線BE的交點(diǎn),
∴I(1,-1),即M3(1,-1).
故符合題意的M點(diǎn)的坐標(biāo)為(-,),(1,-1).
點(diǎn)評(píng):本題考查了二次函數(shù)綜合題型:第(1)問涉及全等三角形的證明;第(2)問涉及利用待定系數(shù)法求一次函數(shù)與二次函數(shù)的解析式;第(3)問涉及軸對(duì)稱知識(shí),以及拋物線與一次函數(shù)的交點(diǎn)問題;第(4)問涉及相似三角形的判定,以及點(diǎn)的坐標(biāo)的確定與計(jì)算.本題涉及考點(diǎn)眾多,難度較大,對(duì)數(shù)學(xué)能力要求較高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案